Light quark masses: from fiction to fact

Stephan Dürr

University of Wuppertal Jülich Supercomputing Center

based on work with

Budapest-Marseille-Wuppertal Collaboration

HIC for FAIR colloquium Frankfurt 20 October 2011

Origin of mass: EW versus QCD phase transition

- EW symmetry breaking (times Yukawa couplings) generates quark masses: $m_u = 2.4 \pm 0.7 \, \mathrm{MeV}$, $m_d = 4.9 \pm 0.8 \, \mathrm{MeV}$, $m_s = 105 \pm 25 \, \mathrm{MeV}$ [PDG'10].
- QCD chiral/conformal symmetry breaking generates nucleon mass: $M_{p/n} \simeq 890 \, \mathrm{MeV}$ at $m_{ud} = 0$ (to be compared with $940 \, \mathrm{MeV}$ at m_{ud}^{phys}).

QCD at high energies

Asymptotic freedom

[t'Hooft 1972, Gross-Wilczek/Politzer 1973]

$$\frac{\beta(\alpha)}{\alpha} = \frac{\mu}{\alpha} \frac{\partial \alpha}{\partial \mu} = \beta_1 \alpha^1 + \beta_2 \alpha^2 + \dots$$

$$eta_1 = (-11N_c + 2N_f)/(6\pi)$$
 with $N_c = 3$ gives $eta_1 < 0$ for $N_f < 33/2$

- virtual gluons anti-screen, i.e. they make a static color source appear *stronger* at large distance.
- virtual quarks weaken this effect.

QCD at low energies

- In quenched QCD the $\bar{Q}Q$ potential keeps growing, $V(r) = \alpha/r + \text{const} + \sigma r$.
- In full QCD it is energetically more favorable to pop a light $\bar{q}q$ pair out of the vacuum, $V(r) \leq \mathrm{const.}$ Analysis with explicit $\bar{Q}q\bar{q}Q$ state: Balietal., PRD 71, 114513 (2005).

Bound state dynamics in QED versus QCD

- Q0: What is the physical meaning of the "wrong sign" of the proton binding energy if *current quark masses* are used?
- Q1: Do we understand strong dynamics sufficiently well as to postdict the mass of the proton ?
- Q2: If so, can we turn the calculation around and determine $m_{ud} = (m_u + m_d)/2$ from first principles ?

Talk outline

- Information from Chiral Perturbation Theory (XPT)
- Information from Sum Rules (SR)
- Lattice QCD: $m_q^{\mathrm{bare}} \longleftrightarrow M_{\pi,K,\Omega}$
- ullet Commercial: Why it helps to bracket $m_q^{
 m phys}$
- Lattice QCD: $m_q^{\rm bare} \longleftrightarrow m_q^{\rm SF/RI} \longleftrightarrow m_q^{\overline{\rm MS}}$
- Commercial: Why it helps to have contact with PT
- Lattice QCD: shortcut via m_{ud}/m_s , m_s/m_c and m_c from elsewhere
- Summary: reference to FLAG review
- Outlook: $N_f = 1+1+1+1$ simulations with electromagnetism

Chiral Perturbation Theory (1): framework

SU(3) Lagrangian with quark masses set to zero

$$L_{\text{QCD}} = -\frac{1}{4} \text{Tr} G_{\mu\nu} G^{\mu\nu} + \bar{q}_L i \not D q_L + \bar{q}_R i \not D q_R$$

with $q=(u,d,s)^{\mathrm{transp}}$ and $q_{R,L}=\frac{1}{2}(1\pm\gamma_5)q$ exposes large symmetry group $SU(3)_L\times SU(3)_R\times U(1)_V\times U(1)_A$. One factor breaks down spontaneously as $SU(3)_L\times SU(3)_R\longrightarrow SU(3)_V$, which gives rise to an octet of Goldstone bosons.

General mass expansion for a particle P

$$M^{2} = M_{0}^{2} + (m_{u} + m_{d})\langle P|\bar{q}q|P\rangle + O(m_{q}^{2})$$

simplifies for a (pseudo-) Goldstone boson as

$$M^{2} = -(m_{u} + m_{d}) \frac{1}{F^{2}} \langle 0 | \bar{q}q | 0 \rangle + O(m_{q}^{2})$$

where we have used the Ward identity $\langle \pi | \bar{q}q | \pi \rangle = -\frac{1}{F^2} \langle 0 | \bar{q}q | 0 \rangle \equiv B$.

Chiral Perturbation Theory (2): quark mass ratios

Consider whole pseudoscalar octet:

$$M_{\pi^+}^2 = B_0(m_u + m_d)$$
, $M_{K^+}^2 = B_0(m_u + m_s)$, $M_{K^0}^2 = B_0(m_d + m_s)$

Quark mass ratios [necessary, since only B_0m_q shows up]:

$$\frac{m_u}{m_d} = \frac{M_{\pi^+}^2 - M_{K^0}^2 + M_{K^+}^2}{M_{\pi^+}^2 + M_{K^0}^2 - M_{K^+}^2} \simeq 0.67$$

$$\frac{m_s}{m_d} = \frac{M_{K^0}^2 + M_{K^+}^2 - M_{\pi^+}^2}{M_{K^0}^2 - M_{K^+}^2 + M_{\pi^+}^2} \simeq 20.0$$

Combine with SU(6) based estimate $m_{ud} \equiv (m_u + m_d)/2 = 5.4 \,\mathrm{MeV}$ [Leutwyler'75]

$$m_u \sim 4 \,\mathrm{MeV}$$
, $m_d \sim 6 \,\mathrm{MeV}$, $m_s \sim 135 \,\mathrm{MeV}$.

Improvement from including electromagnetic corrections (Dashen's theorem).

Surprise from pushing to higher order in the chiral expansion (KM ambiguity).

Analytical Sum Rules (1): framework

2-point correlator of weak currents $L^{\mu}=\bar{u}\gamma^{\mu}(1-\gamma_5)d_{\theta}$ with Cabibbo rotated d_{θ} is

$$\Pi_L^{\mu\nu}(q) = i \int d^4x \, e^{iqx} \langle 0|T\{L^{\mu}(x)L^{\nu}(0)^{\dagger}|0\rangle
= (-g^{\mu\nu}q^2 + q^{\mu}q^{\nu})\Pi_L^{(1)}(q^2) + q^{\mu}q^{\nu}\Pi_L^{(0)}(q^2)$$

Physically interesting quantities are related to an integration of the type $\int_0^{m_\tau^2} ds$ of ${\rm Im}\Pi^{(n)}(s)$ with various weight functions.

Trade integral along the cut of

$$\operatorname{Im}\Pi_L^n(s) = \frac{1}{2i} \Big[\Pi_L^n(s + i\epsilon) - \Pi_L^n(s - i\epsilon) \Big]$$

for an integral along the circle $|s|=m_{ au}^2$.

Analytical Sum Rules (2): quark mass values

Old sum rule results for $m_s^{\overline{\rm MS}}(2\,{\rm GeV})$ usually clustered around $125\,{\rm MeV}.$

Summary of semi-recent results for $m_s^{\overline{\rm MS}}(2\,{\rm GeV})$ in MeV based on au data:

Jamin et al. (02)	99 ± 16
Kambor Maltman (02)	100 ± 12
Gamiz et al (03)	103 ± 17
Jamin et al. (05)	81 ± 22
Gorbunov Pivovarov (05)	125 ± 28
Baikov et al. (05)	96 ± 19
Narison (05)	89 ± 25

The first set is mostly based on ALEPH data.

The second one includes data from OPAL and CLEO.

Budapest-Marseille-Wuppertal collaboration

Lattice QCD (1): combined UV/IR regulator

Elementary degrees of freedom are <u>quarks</u> and <u>gluons</u>, transforming in the fundamental representation of SU(3) [Fritzsch, Gell-Mann and Leutwyler (1973)]. In euclidean space:

$$\mathcal{L}_{\text{QCD}} = \frac{1}{4} \text{Tr}(F_{\mu\nu} F_{\mu\nu}) + \sum_{i=1}^{N_f} \bar{q}^{(i)} (D + m^{(i)}) q^{(i)} + i\theta \frac{1}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} \text{Tr}(F_{\mu\nu} F_{\rho\sigma})$$

- QCD must be regulated both in the UV and in the IR to make it well-defined; such a regulator is a necessary ingredient in a QCD calculation.
- The lattice does this by a>0 and $V=L^4<\infty$, but other options are possible. In fact, each gauge/fermion action is a different regulator.
- ullet The extrapolations $a \to 0$ and $V \to \infty$ are performed in the resulting observables.
- The result is independent of the action, thanks to universality (spin syst, RG, FP).
- Lattice discretization is not an approximation to continuous space-time, but (generically) an unavoidable interim part of the definition of QCD!
- ⇒ Does this *Lagrangian-regulator-extrapolation package* explain confinement, chiral/conformal symmetry breaking, hadron spectrum, ... ?

Lattice QCD (2): crash course

QFT on the lattice

$$Z=\int\!\! D\!\phi\;e^{-S[\phi]}$$
, $S[\phi]=rac{1}{2}(
abla\!\phi)^2+rac{m}{2}\phi^2+\dots$, $D\!\phi$ means $-\infty<\phi(x)<\infty$ for each x

• Gluons on the lattice

$$U_{\mu}(x)U_{\nu}(x+a\hat{\mu}) - U_{\nu}(x)U_{\mu}(x+a\hat{\nu}) = ia^{2}F_{\mu\nu}(x) + O(a^{3})$$

$$F_{\mu\nu}(x) = \partial_{\mu}A_{\nu}(x) - \partial_{\nu}A_{\mu}(x) + ig[A_{\mu}(x), A_{\nu}(x)]$$

$$S[U] = \beta \sum_{\square} \{1 - \frac{1}{3} \operatorname{ReTr}(U_{\square})\} \rightarrow \frac{a^{4}}{g^{2}} \sum_{x,\mu < \nu} \operatorname{Tr}(F_{\mu\nu}(x)^{2})$$

• Quarks on the lattice

 $S[U] \to S[U] - \log(\det(D[U]))$, still integrate over SU(3) for each link

Computation overview

- 1. Generate configurations U distributed according to $p[U] = e^{-S[U]} \det^{N_f}(D[U])$.
- 2. Solve D[U]x = b, build propagators to measure C(t) for various states.
- 3. Use PT/SF/RI to renormalize/match to continuum schemes (e.g. $\overline{\rm MS}$).
- 4. Use effective field theories to extrapolate $a \to 0$, $L \to \infty$, maybe $m_q \to m_q^{\rm phys}$.

Lattice QCD (3): scale hierarchies

typical spacing: $0.05 \, \text{fm} \le a \le 0.20 \, \text{fm}$

 $1 \, \text{GeV} \le a^{-1} \le 4 \, \text{GeV}$

typical length: $2 \text{ fm} \le L \le 6 \text{ fm}$

require: $am_q \ll 1 \text{ and } aM_{\rm had} \ll 1$

require: $M_{\pi}L > 4 \text{ [note } 4/M_{\pi}^{\text{phys}} \simeq 5.8 \text{ fm]}$

Asterisk: Tune to appropriate (bare) am_q for each lattice spacing and each flavor. In QCD with N_f quarks, N_f+1 observables used to determine quark masses and scale.

Lattice QCD spectroscopy (1)

Hadronic correlator in $N_f \ge 2$ QCD: $C(t) = \int d^4x \ C(t, \mathbf{x}) \ e^{i\mathbf{p}\mathbf{x}}$ with

$$C(x) = \langle O(x) O(0)^{\dagger} \rangle = \frac{1}{Z} \int DU D\bar{q} Dq \ O(x) O(0)^{\dagger} \ e^{-S_G - S_F}$$

where
$$O(x) = \bar{d}(x)\Gamma u(x)$$
 and $\Gamma = \gamma_5, \gamma_4\gamma_5$ for π^{\pm} and $S_G = \beta \sum (1 - \frac{1}{3} \mathrm{Re} \mathrm{Tr} \, U_{\mu\nu}(x))$, $S_F = \sum \bar{q}(D+m)q$

$$\langle \bar{d}(x)\Gamma_{1}u(x) \ \bar{u}(0)\Gamma_{2}d(0)\rangle = \frac{1}{Z} \int DU \ \det(D+m)^{N_{f}} \ e^{-S_{G}}$$

$$\times \operatorname{Tr} \left\{ \Gamma_{1}(D+m)_{x0}^{-1} \Gamma_{2} \underbrace{(D+m)_{0x}^{-1}}_{\gamma_{5}[(D+m)_{x0}^{-1}]^{\dagger} \gamma_{5}} \right\}$$

$$(A)$$

(A) Quenched QCD: quark loops neglected

- (B) Full QCD
- Choose $m_u = m_d$ to save CPU time, since isospin SU(2) is a good symmetry.
- In principle $m_{\rm valence} = m_{\rm sea}$, but often additional valence quark masses to broaden data base. Note that "partially quenched QCD" is an *extension* of "full QCD".
- $(D+m)_{x0}^{-1}$ for all x amounts to 12 columns (with spinor and color) of the inverse.

Lattice QCD spectroscopy (2)

Excellent data quality even on our lightest ensemble $(M_{\pi} \simeq 190 \,\mathrm{MeV}$ and $L \simeq 4.0 \,\mathrm{fm})$:

 $\cosh(.)/\sinh(.)$ for $-PP, |PA_0|, |A_0P|, A_0A_0$ with Gauss source and local/Gauss sink

$$C_{Xx,Yy}(t) = c_0 e^{-M_0 t} \pm c_0 e^{-M_0 (T-t)} + \dots$$
 with $X, Y \in \{P, A_0\}$ and $x, y \in \{loc, gau\}$

 $\longrightarrow c_0 = G\tilde{G}/M_0, G\tilde{F}, F\tilde{G}, F\tilde{F}M_0$ (left) and $c_0 = \tilde{G}\tilde{G}/M_0, \tilde{G}\tilde{F}, \tilde{F}\tilde{G}, \tilde{F}\tilde{F}M_0$ (right)

 \longrightarrow combined 1-state fit of 8 correlators with 5 parameters yields $M_\pi, F_\pi, m_{
m PCAC}$

Lattice QCD spectroscopy (3)

With similar techniques for other channels we find in each run aM_{π} , aM_{K} , aM_{ρ} , $aM_{K^{*}}$, aM_{N} , aM_{Σ} , aM_{Ξ} , aM_{Δ} , aM_{Δ} , $aM_{\Sigma^{*}}$, $aM_{\Xi^{*}}$, aM_{Ω} .

Cost growth (Lattice 2001, "Berlin wall phenomenon") recently tamed [in two parts]:

$$a o 0$$
 $V o \infty$ $m_{ud} o m_{ud}^{
m phys}$ $\delta({
m observable}) o 0$

$$\cos t \propto (1/a)^{4-6}$$
 $\cos t \propto V^{5/4}$ with HMC $\cos t \propto (1/m)^{1-2}$ with tricks $\cot \propto \delta^{-2}$

Lattice QCD spectroscopy (4)

Final result: BMW collaboration, Science 322, 1224 (2008)

Technical interlude: machine details

"JUGENE" [IBM BG/P]

processor type compute node racks, nodes, processors memory performance (peak/Lapack) power consumption network topology

network latency network bandwidth 02/2008 - 02/2009

32-bit PowerPC 450 core 850 MHz 4-way SMP processor

16, 16'384, 65'536

2 GB per node, aggregate 32 TB 223/180 Teraflops [double prec.]

<40 kW/rack, aggregate 0.5 MW

06/2009 - ...

(3.4 Gflops each)

72, 73'728, 294'912 aggregate 144 TB 1/0.825 Petaflops 2.2 Megawatt

3D torus among compute nodes (plus global tree collective network, plus ethernet admin network) 160 nsec (light travels 48 meters) 5.1 Gigabyte/s

Lattice Perturbation Theory

$$\langle .|O_j^{\text{cont}}(\mu)|.\rangle = \sum_k Z_{jk}(a\mu)\langle .|O_k^{\text{latt}}(a)|.\rangle$$

$$Z_{jk}(a\mu) = \delta_{jk} - \frac{g_0^2}{16\pi^2} (\Delta_{jk}^{latt} - \Delta_{jk}^{cont}) = \delta_{jk} - \frac{g_0^2}{16\pi^2} C_F z_{jk}$$

$$Z_S(a\mu) = 1 - \frac{g_0^2}{4\pi^2} \left[\frac{z_S}{3} - \log(a^2\mu^2) \right]$$
 $Z_V = 1 - \frac{g_0^2}{12\pi^2} z_V$

$$Z_P(a\mu) = 1 - \frac{g_0^2}{4\pi^2} \left[\frac{z_P}{3} - \log(a^2\mu^2) \right]$$
 $Z_A = 1 - \frac{g_0^2}{12\pi^2} z_A$

Generically $[z_P - z_S]/2 = z_V - z_A$, and for a chiral action either side vanishes.

Generically 1-loop LPT would yield results with leading cut-off effects $O(\alpha a)$, in line with the leading effects from our action, but the general hope/belief is that with non-perturbative improvement (in RI) the Symanzik scaling window is larger.

2 HEX study: ensemble overview

• Mass-independent scale setting [i.e. per β] in $N_f = 2+1$ QCD at the point where M_π/M_Ω and M_K/M_Ω assume their physical values.

β	a[fm]	$a^{-1}[GeV]$	$\#(m_{ud},m_s)$
3.31	0.116	1.697(06)	11
3.5	0.093	2.131(13)	12
3.61	0.077	2.561(26)	9
3.7	0.065	3.026(27)	9
3.8	0.054	3.662(35)	6

- Bare masses (via ratio/difference method) on all $N_f = 2+1$ ensembles.
- Additional $N_f = 3$ ensembles at same β values for RI renormalization, with point-by-point (in p^2) chiral extrapolation of renormalization factors.
- Combined continuum extrapolation and interpolation of the renormalized m_q to the physical point $[M_{\pi} = 135 \,\mathrm{MeV}, M_K = 495 \,\mathrm{MeV}]$ on the former ensembles.
 - → first study with Wilson-type quarks to reach physical mass point!

2 HEX study: $N_f = 2+1$ simulation landscape

 \longrightarrow we can *interpolate* to $M_\pi^{
m phys}\!\simeq\!135\,{
m MeV}$ at 3 out of 5 lattice spacings

2 HEX study: $N_f = 2+1$ finite volume corrections

Relative finite-volume corrections for masses and decay constants die out exponentially fast for large $M_{\pi}L$ [Lüscher'85].

Results at approximate 3-loop (M_{π}) and 2-loop (F_{π}) order are found in [CDH'05].

Algorithmic challenges: $1/n_{\rm CG}$ count

Inverse iteration count (1000/N_{cg})

VWI versus AWI definition of quark masses

Bare Wilson mass undergoes additive and multiplicative renormalization:

$$m^{\mathrm{VWI}} = \frac{1}{Z_S} \left[1 - \frac{1}{2} b_S a m^{\mathrm{W}} + O(a^2) \right] m^{\mathrm{W}}$$
 where $m^{\mathrm{W}} = m^{\mathrm{bare}} - m^{\mathrm{crit}}$

 $Z_S = Z_S(\mu)$ is the lattice-to-continuum "renormalization" (matching) factor.

Alternatively one may use the axial Ward identity:

$$m_1^{\text{PCAC}} + m_2^{\text{PCAC}} = \frac{\sum_{\vec{x}} \langle \bar{\partial}_{\mu} [A_{\mu}(x) + ac_A \bar{\partial}_{\mu} P(x)] O(0) \rangle}{\sum_{\vec{x}} \langle P(x) O(0) \rangle}$$

 A_{μ} and P denote the axial current and the pseudoscalar density. O is an arbitrary operator which couples to the meson (usually O=P). $\bar{\partial}_{\mu}\phi(x)\!=\![\phi(x\!+\!a\hat{\mu})\!-\!\phi(x\!-\!a\hat{\mu})]/(2a)$ is the symmetric derivative.

$$m^{\text{AWI}} = \frac{Z_A}{Z_P} \frac{1 + b_A a m^{\text{W}} + O(a^2)}{1 + b_P a m^{\text{W}} + O(a^2)} m^{\text{PCAC}}$$

 Z_A and $Z_P = Z_P(\mu)$ are lattice-to-continuum "renormalization" (matching) factors.

Ratio-difference method for quark masses

- It is natural to measure the difference $m_s m_{ud}$ via the Wilson or Lagrangian mass difference $d \equiv a m_s^{\rm W} a m_{ud}^{\rm W} = a m_s^{\rm bare} a m_{ud}^{\rm bare}$ since it requires only $Z_S(\mu)$.
- It is natural to measure the ratio m_s/m_{ud} via the PCAC quark mass ratio $r \equiv m_s^{\rm PCAC}/m_{ud}^{\rm PCAC}$, as it does not require any further renormalization.

Without O(a)-improvement only $1/Z_S^{\mathrm{RI}}$ is needed to obtain renormalized masses from

$$am_{ud}^{\text{sub}} = \frac{d}{r-1}$$
, $am_s^{\text{sub}} = \frac{rd}{r-1}$.

With tree-level O(a) improvement, renormalized masses take the form

$$m_{ud} = \frac{m_{ud}^{\text{sub}}}{Z_S} \left[1 - \frac{a}{2} (m_{ud}^{\text{sub}} + m_s^{\text{sub}}) \right] + O(\alpha a)$$

$$m_s = \frac{m_s^{\text{sub}}}{Z_S} \left[1 - \frac{a}{2} (m_{ud}^{\text{sub}} + m_s^{\text{sub}}) \right] + O(\alpha a) .$$

- \Longrightarrow Advantage 1: only $Z_S^{\mathrm{RI}}(\mu)$ (flavor non-singlet) is required, difficult Z_P not.
- \Longrightarrow Advantage 2: no determination of $am_{\rm crit}$ is required.

Final result for m_s/m_{ud}

Good scaling of m_s/m_{ud} out to the coarsest lattice ($a \sim 0.116 \, \mathrm{fm}$):

Final result is $m_s/m_{ud}=27.53(20)(08)$ which amounts to 0.78% precision.

2 HEX $N_f = 3$ RI-scheme-running extrapolation for Z_S

Evolution $Z_S^{\rm RI}(\mu)/Z_S^{\rm RI}(4\,{\rm GeV})$ has no visible cut-off effects among three finest lattices:

 \longrightarrow separate continuum limit with $R_S^{
m RI}(\mu, 4\,{
m GeV}) = \lim_{eta o\infty}\,Z_{S,eta}^{
m RI}(4\,{
m GeV})/Z_{S,eta}^{
m RI}(\mu)$

2 HEX $N_f = 3$ RI-scheme-running ratio for Z_S

On the finest lattice we make contact within errors to 4-loop PT for $\mu \geq 4 \, \mathrm{GeV}$:

$N_f = 3$ RI- and $\overline{\rm MS}$ -scheme perturbative series for Z_S

- ullet RI series (left) converges less convincingly than $\overline{\mathrm{MS}}$ series (right)
- difference "4-loop" to "4-loop/ana" indicates size of 5-loop effects
- ratio suggests that higher-loop effects in RI are < 1% at $\mu = 4 \, \mathrm{GeV}$
- ullet ratio suggests that higher-loop effects in $\overline{\mathrm{MS}}$ are negligible down to $\mu\!=\!2\,\mathrm{GeV}$

Final results for m_s and m_{ud}

Good scaling of $m_{ud,s}^{\rm RI}(4\,{\rm GeV})$ out to the coarsest lattice $(a\!\sim\!0.116\,{\rm fm})$:

Conversion with analytical 4-loop formula at $4\,\mathrm{GeV}$ and downwards running in $\overline{\mathrm{MS}}$:

	m_s	m_{ud}	m_u	m_d
RI(4 GeV)	96.4(1.1)(1.5)	3.503(48)(49)	2.17(04)(10)	4.84(07)(12)
RGI	127.3(1.5)(1.9)	4.624(63)(64)	2.86(05)(13)	6.39(09)(15)
$\overline{\mathrm{MS}}(2\mathrm{GeV})$	95.5(1.1)(1.5)	3.469(47)(48)	2.15(03)(10)	4.79(07)(12)

Splitting $m_{ud} \rightarrow m_u, m_d$ with information from $\eta \rightarrow 3\pi$

The process $\eta \to 3\pi$ is highly sensitive to QCD isospin breaking (from $m_u \neq m_d$) but rather insensitive to QED isospin breaking (from $q_u \neq q_d$).

Rewrite the Leutwyler ellipse in the form

$$\frac{1}{Q^2} = 4 \left(\frac{m_{ud}}{m_s}\right)^2 \frac{m_d - m_u}{m_d + m_u}$$

and use the conservative estimate from $\eta \to 3\pi$ given in [Leutwyler CD'09]

$$Q = 22.3(8)$$

together with our result (0.78% precision)

$$m_s/m_{ud} = 27.53(20)(08)$$

to obtain the asymmetry parameter

$$\frac{m_d - m_u}{m_d + m_u} = 0.381(05)(27) \quad \longleftrightarrow \quad m_u/m_d = 0.448(06)(29)$$

from which the results in the last two columns were derived (note: $m_u = 0$ disfavored).

Shortcut via m_{ud}/m_s , m_s/m_c and m_c input from elsewhere

• HPQCD Collaboration, PRL 104, 132003 (2010) [arXiv:0910.3102]

Obtain $m_c/m_s=11.85(16)$ with HISQ quarks on $N_f=2+1$ asqtad ensembles by MILC. Using their $m_c^{\overline{\rm MS}}=1.095(11)\,{\rm GeV}$ [scale $\mu\!=\!2\,{\rm GeV}$ throughout] from an earlier study they obtain $m_s^{\overline{\rm MS}}\!=\!92.4(1.5)\,{\rm MeV}$.

• ETM Collaboration, PRD 82, 114513 (2010) [arXiv:1010.3659]

Obtain $m_c/m_s = 12.0(3)$ with Osterwalder-Seiler quarks on their own $N_f = 2$ twisted mass ensembles. They do not use the shortcut, as they prefer to compute m_s with non-perturbative renormalization, finding $m_s^{\overline{\rm MS}} = 95(6) {\rm MeV}$.

• S. Dürr and G. Koutsou, arXiv:1108.1650

Obtain $m_c/m_s=11.34(40)(21)$ with Brillouin quarks on $N_f=2$ clover ensembles by QCDSF. Using an aggregate value $m_c^{\overline{\rm MS}}=1.093(13)\,{\rm GeV}$ from the literature yields $m_s^{\overline{\rm MS}}=96.4(3.4)(2.1)\,{\rm MeV}.$

 \implies price to pay is that "anchor" m_c typically includes a perturbative uncertainty

FLAG compilation

- \longrightarrow apparent "tension" between $N_f = 2$ (white band) and $N_f = 2+1$ (grey band) results may be due to better NP renormalization in the latter case.
- \longrightarrow BMW collaboration values not yet included \Longrightarrow arXiv:1011.2403,1011.2711.

Outlook: $N_f = 1+1+1+1$ simulations with electromagnetism

• 2002-20??:

 $N_f = 2+1$ QCD requires 3 polished input values (e.g. M_π , M_K , M_Ω in theory with $m_u, m_d \to (m_u + m_d)/2$ and $e \to 0$)

 \longrightarrow analysis suggests $M_{\pi} = 134.8(3) \mathrm{MeV}, M_{K} = 494.2(5) \mathrm{MeV}$ (see FLAG report)

• 2010-????:

 $N_f = 2+1+1$ QCD requires 4 polished input values (like above plus M_{D_s} , still $m_u, m_d \to (m_u + m_d)/2$ and $e \to 0$)

---> charm unquenched, but no conceptual change on isospin issue

• 2014-????:

 $N_f=1+1+1+1$ QCD requires 5 input variables (e.g. $M_{\pi^\pm},M_{K^\pm},M_{K^0},M_{D_s},M_\Omega$)

- ----- requires disconnected contribution to flavor-singlet quantities
- \longrightarrow analysis of π^0 - η - γ mixing mandatory to extract physical masses
- \longrightarrow QED and QCD renormalization intertwined (m_s/m_d) is RGI, m_u/m_d is not)
- \longrightarrow final word on $m_u \stackrel{?}{=} 0$ [in QCD+QED] will be possible