Lattice QCD: the proton mass from scratch

Stephan Dürr

von Neumann Institute for Computing FZ Jülich and DESY Zeuthen
in collaboration with
Z. Fodor, J. Frison, C. Hoelbling, S. D. Katz, S. Krieg,
L. Lellouch, T. Kurth, T. Lippert, K. K. Szabó, G. Vulvert
[Budapest-Marseille-Wuppertal Collaboration]
PSI Villigen, 12.3. 2009

QCD spectrum: BMW collaboration, Science 322, 1224 (2008)

Origin of mass: EW versus QCD phase transition

Evolution of the Universe

EW symmetry breaking generates Yukawa couplings:
$m_{u}=2.4 \pm 0.9 \mathrm{MeV}, m_{d}=4.8 \pm 1.3 \mathrm{MeV}$ [PDG'08].
QCD chiral/conformal symmetry breaking generates nucleon mass: $M_{p / n} \simeq 890 \mathrm{MeV}$ at $m_{u d}=0$ (to be compared with 940 MeV at $m_{u d}^{\text {phys }}$).

Overview

- QCD within the SM
- QCD at high energies
- QCD at low energies
- QCD Lagrangian
- path-integral quantization
- lattice gauge theory
- lattice spectroscopy
- sparse matrix inversion
- stochastic determinant estimation
- machine details
- simulation landscape
- systematics $\left(a \rightarrow 0, V \rightarrow \infty, m_{q} \rightarrow m_{q}^{\text {phys }}\right)$
- analysis details and final result
- flashback: Wilson's CPU-time estimate
- outlook: more strong dynamics

QCD within the SM

matter:

ν_{e}	ν_{μ}	ν_{τ}
e	μ	τ
u	c	t
d	s	b

forces:

The "two faces" of QCD are associated with

- asymptotic freedom at $q^{2} \rightarrow \infty$ ("weak [w.r.t. g^{2}] coupling regime")
- confinement and chiral symmetry breaking at $q^{2} \rightarrow 0$ ("strong coupling regime")

Do we understand strong dynamics sufficiently
 well as to "postdict" the mass of the proton ?

QCD at high energies

Asymptotic freedom
[t'Hooft 1972, Gross-Wilczek/Politzer 1973]

$$
\begin{gathered}
\frac{\beta(\alpha)}{\alpha}=\frac{\mu}{\alpha} \frac{\partial \alpha}{\partial \mu}=\beta_{1} \alpha^{1}+\beta_{2} \alpha^{2}+\ldots \\
\beta_{1}=\left(-11 N_{c}+2 N_{f}\right) /(6 \pi) \\
\text { with } N_{c}=3 \text { gives } \\
\beta_{1}<0 \text { for } N_{f}<33 / 2
\end{gathered}
$$

- virtual gluons anti-screen, i.e. they make a static color source appear stronger at large distance.
- virtual quarks weaken this effect.

QCD at low energies

- In quenched QCD the $\bar{Q} Q$ potential keeps growing, $V(r)=\alpha / r+$ const $+\sigma r$.
- In full QCD it is energetically more favorable to pop a light $\bar{q} q$ pair out of the vacuum, $V(r) \leq$ const. Analysis with explicit $\bar{Q} q \bar{q} Q$ state: Balietal., PRD 71, 114513 (2005).

QCD Lagrangian

Elementary degrees of freedom are quarks and gluons, transforming in the fundamental representation of $S U(3)$ [Fritzsch, Gell-Mann and Leutwyler (1973)]. In euclidean space:

$$
\mathcal{L}_{\mathrm{QCD}}=\frac{1}{2} \operatorname{Tr}\left(F_{\mu \nu} F_{\mu \nu}\right)+\sum_{i=1}^{N_{f}} \bar{q}^{(i)}\left(\not D+m^{(i)}\right) q^{(i)}+\mathrm{i} \theta \frac{1}{32 \pi^{2}} \epsilon_{\mu \nu \rho \sigma} \operatorname{Tr}\left(F_{\mu \nu} F_{\rho \sigma}\right)
$$

- QCD must be regulated both in the UV and in the IR.
- The lattice does this by $a>0$ and $V=L^{4}<\infty$, but other options are (in principle) possible. In fact, different gauge/fermion actions represent such options.
- The extrapolations $a \rightarrow 0$ and $V \rightarrow \infty$ are performed in the resulting observables.
- The result is independent of the action, thanks to universality (spin sys., RG, FP).
\Longrightarrow Lattice discretization is not an approximation to continuous space-time, but (generically) an unavoidable interim part of the definition of QCD !
\Longrightarrow Does this Lagrangian-regulator-extrapolation package explain confinement, chiral/conformal symmetry breaking, hadron spectrum, ... ?

Path integral quantization

Consider QM particle in 1D space with Hamiltonian

$$
H=\frac{p^{2}}{2 m}+V(x) \equiv H_{0}+V(x)
$$

Transition amplitude in closed form for free case

$$
\left\langle x^{\prime}\right| e^{-\mathrm{i} H_{0}\left(t^{\prime}-t\right)}|x\rangle=\sqrt{\frac{m}{2 \pi \mathrm{i}\left(t^{\prime}-t\right)}} \exp \left\{\frac{\mathrm{i} m}{2\left(t^{\prime}-t\right)}\left(x^{\prime}-x\right)^{2}\right\}
$$

and insertion of a complete set of $n-1$ position eigenstates (with $T=n \cdot \Delta t$)

$$
\left\langle x^{\prime}, t^{\prime} \mid x, t\right\rangle=\int d x_{1} . . d x_{n-1}\left\langle x^{\prime}\right| e^{-\mathrm{i} H \Delta t}\left|x_{n-1}\right\rangle\left\langle x_{n-1}\right| e^{-\mathrm{i} H \Delta t}\left|x_{n-2}\right\rangle \cdots\left\langle x_{1}\right| e^{-\mathrm{i} H \Delta t}|x\rangle
$$

yield (upon using leading term in Baker-Campbell-Hausdorff formula) the result:

$$
\left\langle x^{\prime}, t^{\prime} \mid x, t\right\rangle=\int \frac{d x_{1} . . d x_{n-1}}{(2 \pi \mathrm{i} \Delta t / m)^{n / 2}} \exp \left\{\frac{\mathrm{i}}{\sum_{\sum_{k=0}^{n-1} \Delta t\left[\frac{m}{2}\left(\frac{x_{k+1}-x_{k}}{\Delta t}\right)^{2}-V\left(x_{k}\right)\right]}} \underset{\int_{0}^{T} d t\left[\frac{m}{2}\left(\frac{d x}{d t}\right)^{2}-V(x)\right]=\int_{0}^{T} d t L[x, \dot{x}] \equiv S[x(t)]}{ }\right\}
$$

- Upshot: apply QM double-slit philosophy even without a slit !
- $t \rightarrow\left(x_{1}, . ., x_{4}\right)$ and $x \rightarrow \phi$ ("integrate over space of field configurations") in QFT.

Lattice QCD basics (1)

- Define space-time as regular 4D grid (spacing a) with periodic boundary conditions.
- Put matter fields on sites: scalar $\phi(x)$ or spinor $\psi(x)$ with $x=\left(a n_{1}, . ., a n_{4}\right)$.
- Put gauge fields on links: photon or gluon within $U_{\mu}(x)=\exp \left(\mathrm{i} \int_{x}^{x+\hat{\mu}} A_{\mu}\left(x^{\prime}\right) d x^{\prime}\right)$.
- Define gluon and fermion action with correct weak-coupling limit and $S=S_{G}+S_{F}$.
- Define $Z=\int D U D \bar{\psi} D \psi \exp (-S[U, \bar{\psi}, \psi])$ via integration over all field variables.
- Use methods from statistical mechanics to sample relevant field configurations.

Lattice QCD basics (2)

typical spacing:	$0.05 \mathrm{fm} \leq a \leq 0.20 \mathrm{fm}$
	$1 \mathrm{GeV} \leq a^{-1} \leq 4 \mathrm{GeV}$
typical length:	$1.5 \mathrm{fm} \leq L \leq 4.5 \mathrm{fm}$
require:	$a m_{q} \ll 1$ and $a M_{\mathrm{had}} \ll 1$
require:	$M_{\pi} L>4 \quad$ [note $\left.4 / M_{\pi}^{\text {phys }} \simeq 5.8 \mathrm{fm}\right]$

u	c	(t
d	s	b
$\overbrace{\text { extrapolate }}$	$\overbrace{\text { work at }}$	$\overbrace{\text { extrapolate }}$
$m_{u} \searrow m_{u}^{\text {phys }}$	"physical"	$m_{b} \nearrow m_{b}^{\text {phys }}$
$m_{d} \searrow m_{d}^{\text {phys }}$	value	$m_{\infty} \searrow m_{b}^{\text {phys }}$

In QCD with N_{f} quarks, $N_{f}+1$ observables used to determine quark masses and scale.

Lattice QCD spectroscopy (1)

Hadronic correlator in $N_{f} \geq 2$ QCD: $\quad C(t)=\int d^{4} x C(t, \mathbf{x}) e^{\text {ipx }}$ with

$$
C(x)=\left\langle O(x) O(0)^{\dagger}\right\rangle=\frac{1}{Z} \int D U D \bar{q} D q O(x) O(0)^{\dagger} e^{-S_{G}-S_{F}}
$$

where $O(x)=\bar{d}(x) \Gamma u(x)$ and $\Gamma=\gamma_{5}, \gamma_{4} \gamma_{5}$ for $\pi^{ \pm}$and $S_{G}=\beta \sum\left(1-\frac{1}{3} \operatorname{Re} \operatorname{Tr} U_{\mu \nu}(x)\right), S_{F}=\sum \bar{q}(D+m) q$

$$
\left\langle\bar{d}(x) \Gamma_{1} u(x) \bar{u}(0) \Gamma_{2} d(0)\right\rangle=\frac{1}{Z} \int D U \operatorname{det}(D+m)^{N_{f}} e^{-S_{G}}
$$

$$
\times \operatorname{Tr}\{\Gamma_{1}(D+m)_{x 0}^{-1} \Gamma_{2} \underbrace{(D+m)_{0 x}^{-1}}_{\gamma_{5}\left((D+m)_{x 0}^{-1}\right]^{\dagger} \gamma_{5}}\}
$$

(A) Quenched QCD: quark loops neglected

(B) Full QCD

- Choose $m_{u}=m_{d}$ to save CPU time, since isospin $S U(2)$ is a good symmetry.
- In principle $m_{\text {valence }}=m_{\text {sea }}$, but often additional valence quark masses to broaden data base. Note that "partially quenched QCD" is an extension of "full QCD".
- $(D+m)_{x 0}^{-1}$ for all x amounts to 12 columns (with spinor and color) of the inverse.

Lattice QCD spectroscopy (2)

Excellent data quality even on our lightest ensemble ($M_{\pi} \simeq 190 \mathrm{MeV}$ and $L \simeq 4.0 \mathrm{fm}$):
Point_[from]_Gauss, 3.57_m0.0483_m0.007_48x64

Gauss_[from]_Gauss, 3.57_m0.0483_m0.007_48x64

$\cosh (.) / \sinh ($.$) for -P P,\left|P A_{0}\right|,\left|A_{0} P\right|, A_{0} A_{0}$ with Gauss source and local/Gauss sink
$C_{X x, Y y}(t)=c_{0} e^{-M_{0} t} \pm c_{0} e^{-M_{0}(T-t)}+\ldots$ with $X, Y \in\left\{P, A_{0}\right\}$ and $x, y \in\{$ loc, gau $\}$
$\longrightarrow c_{0}=G \tilde{G} / M_{0}, G \tilde{F}, F \tilde{G}, F \tilde{F} M_{0}$ (left) and $c_{0}=\tilde{G} \tilde{G} / M_{0}, \tilde{G} \tilde{F}, \tilde{F} \tilde{G}, \tilde{F} \tilde{F} M_{0}$ (right)
\longrightarrow combined 1-state fit of 8 correlators with 5 parameters yields $M_{\pi}, F_{\pi}, m_{\mathrm{PCAC}}$

Lattice QCD spectroscopy (3)

With similar techniques for other channels we find in each run $a M_{\pi}, a M_{K}, a M_{\rho}, a M_{K^{*}}, a M_{N}, a M_{\Sigma}, a M_{\Xi}, a M_{\Lambda}, a M_{\Delta}, a M_{\Sigma^{*}}, a M_{\Xi^{*}}, a M_{\Omega}$.

Cost growth (Lattice 2001, "Berlin wall phenomenon") recently tamed [in two parts]:

$$
\begin{array}{lll}
a \rightarrow 0 & \text { "continuum limit" } & \text { cost } \propto(1 / a \\
V \rightarrow \infty & \text { "infinite volume limit" } & \text { cost } \propto V^{5 / 4} \\
m_{u d} \rightarrow m_{u d}^{\text {phys }} & \text { "chiral limit" } & \text { cost } \propto(1 / n \\
\delta(\text { observable }) \rightarrow 0 & \text { "reduce statistical error" } & \text { cost } \propto \delta^{-2} \\
\text { Latest account: K. Jansen, Lattice 2008 [arXiv:0810.5634]. }
\end{array}
$$

Sparse matrix inversion

- Wilson: $D \equiv \not D$ is $12 N \times 12 N$ complex sparse matrix, since (in chiral representation) any line/column contains only $3 \cdot(1+2 \cdot 8)=51$ non-zero entries.
- Any inverse is full [non-sparse].
- CG solver yields $D^{-1} \eta \simeq c_{0} \eta+c_{1} D \eta+\ldots+c_{n} D^{n} \eta$ with $n^{2} \propto \operatorname{cond}\left(D^{\dagger} D\right)=\frac{\lambda_{\max }}{\lambda_{\min }}$.

Stochastic determinant estimation

Full QCD requires (frequent) evaluations of $\operatorname{det}(D)$, but:

- state-of-the-art lattices have $L / a=64$ and thus $N=64^{4}=16^{\prime} 777^{\prime} 216$ sites
- D for Wilson-like fermions is $12 N \times 12 N=201^{\prime} 326^{\prime} 592 \times 201^{\prime} 326^{\prime} 592$ matrix
- storing $4 \cdot 10^{16}$ complex numbers in single precision takes $32 \cdot 10^{16}$ bytes
- complete 16 -rack BG/P at Jülich has 32 TB memory, i.e. $32 \cdot 10^{12}$ bytes

$$
N_{f}=2 \text { part: } \quad \operatorname{det}^{2}(D)=\operatorname{det}\left(D^{\dagger} D\right)=\frac{1}{\operatorname{det}\left(\left(D^{\dagger} D\right)^{-1}\right)}=\int D \phi^{\dagger} D \phi e^{-\phi^{\dagger}\left(D^{\dagger} D\right)^{-1} \phi}
$$

BMW code uses battery of tricks:

- even-odd preconditioning
- multiple time-scale integration ("SextonWeingarten scheme")
- mass preconditioning ("Hasenbusch trick")
- Omelyan integrator
- RHMC acceleration with multiple pseudofermions
- mixed-precision solver
- direct SPI (as opposed to MPI) implementation: 37% sustained performance and perfect weak scaling [problem size grows] up to full 16 racks

Machine details

"JUGENE" [IBM BG/P]
processor type compute node racks, nodes, processors memory performance (peak/Lapack) power consumption network topology
network latency network bandwidth

02/2008-02/2009
32-bit PowerPC 450 core 850 MHz
4-way SMP processor
16, 16'384, 65'536
2 GB per node, aggregate 32 TB
223/180 Teraflops [double prec.]
$<40 \mathrm{~kW} /$ rack, aggregate 0.5 MW

Mid/2009-...
(3.4 Gflops each)

72, 73'728, 294'912 aggregate 144 TB
1/... Petaflops
2.2 Megawatt

3D torus among compute nodes (plus global tree collective network, plus ethernet admin network) 160 nsec (light travels 48 meters)
5.1 Gigabyte/s

Simulation landscape

We simulate $N_{f}=2+1$ QCD and set $m_{u d}, m_{s}, a^{-1}$ through $M_{\pi}, M_{K}, M_{\Xi}\left(\right.$ or $\left.M_{\Omega}\right)$. We fix bare strange mass such that renormalized m_{s} is correct at physical $m_{u d}$ point. We have in total 18 ensembles at 3 lattice spacings: $a \sim 0.124 / 0.083 / 0.065 \mathrm{fm}$.

Systematics (1): $a \rightarrow 0$

Continuum extrapolation: take $a \rightarrow 0$ at fixed L [in fm$]$ and M_{π} [in MeV$]$ (tuning!).
Dimensionless ratios such as $R(a)=m_{c}(\overline{\mathrm{MS}}, 2 \mathrm{GeV}) / M_{N}, f_{\pi} / M_{N}, \ldots$ scale to the continuum like

$$
R(a)=R(0)+\operatorname{const}\left(a / r_{0}\right)^{n}
$$

where r_{0} denotes a fixed length, and n is the Symanzik class. Engineering task is to keep const small and n large.

Systematics (2): $V \rightarrow \infty$

Infinite volume extrapolation: take $V \rightarrow 0$ at fixed $a[\mathrm{infm}]$ and $M_{\pi}[\mathrm{inMeV}]$ (simple!).
In p-regime of QCD [$M_{\pi} L \gg 1, L \geq 2 \mathrm{fm}$], finite volume effects on any particle are exponentially small in $M_{\pi} L$, with const calculable in XPT:

$$
M_{\pi, K, N, \Xi, \ldots}(L)=M_{\pi, K, N, \Xi, \ldots}(\infty) \cdot\left(1+\text { const } \cdot e^{-M_{\pi} L}+\ldots\right)
$$

We choose $M_{\pi} L \geq 4$ to have small finite volume effects, correct for these (tiny) effects, and carry out an explicit finite volume scaling check.

Systematics (3): $m_{q} \rightarrow m_{q}^{\text {phys }}$

- We use two scale-setting schemes, one where a depends only on the coupling $\beta=6 / g_{0}^{2}$ with the latter defined via $a M_{\Xi}$ at the physical mass point ("standard"), and another one where a is determined from the simulated Ξ ("courageous"). The physical mass point is defined, at each coupling, by $M_{\pi} / M_{K} / M_{\Xi}$ taking the PDG value. Alternatively, we use Ω instead of Ξ (just as a check).
- With the scale set, we extrapolate quadratically in M_{π} and mimic potential chiral logs through M_{π}^{3} or M_{π}^{4} terms, with free coefficients.
- Our action seems to entail rather small scaling violations for hadron masses.

Global fit: simultaneous $M_{\pi} \rightarrow M_{\pi}^{\text {phys }}, M_{K} \rightarrow M_{K}^{\text {phys }}, a \rightarrow 0$

- To assess the systematic uncertainty, the global fit is repeated with 2 scale settings, with 2 chiral extrapolation formulae, with 3 mass cuts [at $M_{\pi}<470,570,670 \mathrm{MeV}$], with $O(a)$ or $O\left(a^{2}\right)$ Symanzik factors, and with 18 different time intervals in the correlators. This amounts to $2 \cdot 2 \cdot 3 \cdot 2 \cdot 18=432$ versions.
- The central values of all these fits are not-quite-normally distributed; the median and the 16 -th $/ 84$-th percentiles yield the central value and the theoretical error.
- To determine the statistical error, all of this is done in a fully bootstrapped manner.

Final result: BMW collaboration, Science 322, 1224 (2008)

Flashback: Wilson's CPU-time estimate

- Lattice QCD was formulated in 1974:
K.G. Wilson, Confinement of Quarks, PRD 10, 2445 (1974).
- Numerical Monte Carlo calculations started in 1980:
M. Creutz, Monte Carlo study of quantized SU(2) gauge theory, PRD 21, 2308 (1980).
- Ken Wilson at the lattice conference in Capri in 1989:

One lesson is that LQCD could require a 10^{8} increase of computing power AND spectacular algorithmic advances before ... interaction with experiment takes place. At the time of this statement, a supercomputer under construction would offer $\sim 20 \mathrm{Gflops}$, i.e. $2 \cdot 10^{10}$ floating point operations per second [R. Tripiccione, same vol]. Misinterpreting Moore's law (transistor count doubles every 18 months) as a statement about speed, a factor $10^{8}=2^{26.6}$ amounts to $26.6 \cdot 18$ months or 40 years.

- We used 30 RM or 2.5 RY on BG/P, i.e. 1.875 months on full (16 rack) machine. JUGENE has 223 Tflops $\left(2 \cdot 10^{14}\right)$. Our code has 37% sustained performance ratio. \Longrightarrow In total $1.875 \cdot 30 \cdot 24 \cdot 3600 \cdot 223 \cdot 10^{12} \cdot 0.37=4 \cdot 10^{20}$ floating-point operations.

Outlook: more strong dynamics

QCD computations:

- $f_{K} / f_{\pi}, f_{D_{s}} / f_{D}, B_{K},\langle N| \bar{u} u+\bar{d} d|N\rangle, \ldots$
- $\Delta I=1 / 2, \epsilon^{\prime} / \epsilon$, resonances, flavor-singlets, ...
- critical endpoint in (T, μ) plane, \ldots
- non-equilibrium dynamics, ...

SM/BSM problems:

- Higgs dynamics (both SM/BSM)
- technicolor theories (QCD-type theories with bosons/fermions in higher reps)
- generation of scale hierarchies (beyond strong coupling)
- construction of chiral gauge theories on the lattice
- construction of SUSY on the lattice

Summary

LQCD as a first-principles based approach for solving QCD has come of age:

- quenched spectroscopy calculations since 20 years [GF-11 to CP-PACS]
- nowadays determinant of light quarks included $\left[M_{\pi} \simeq 140 \mathrm{MeV}\right.$ to come]
- all systematics controlled [excited states, $a \rightarrow 0, V \rightarrow \infty, m_{q} \rightarrow m_{q}^{\text {phys }}$]
- important physics applications: $f_{K} / f_{\pi}, f_{D_{s}} / f_{D}, B_{K},\langle N| \bar{u} u+\bar{d} d|N\rangle, \ldots$
- hard problems remain: $\Delta I=1 / 2, \epsilon^{\prime} / \epsilon$, resonances, ...

