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Abstract

We present a “reading help” to the book “Modern Particle Physics” by Mark Thomson
(Cambridge University Press, 2013). These notes cover the theory part of the lecture
series “Standard Model” for physics master students at the University of Wuppertal.
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1 Introduction

1.1 Quarks and leptons in three generations

The Standard Model (of particle physics) is built as a quantum field theory (QFT). It knows
about matter fields (which have spin 1

2
), force fields (which have spin 1), and one field which

stays a little apart (the Higgs field with spin 0). In fact, in a QFT the distinction between
matter fields and force fields is not necessary in the first place.

u c t U-quarks (up-type) q = +2/3
d s b D-quarks (down-type) q = −1/3
νe νµ ντ uncharged lept./neutrinos q = 0
e µ τ charged leptons q = −1

The properties of the matter fields are summarized in this table. The first generation
comprises the down (d) and up (u) quarks, along with the electron-neutrino (νe) and the
electron (e−). They have been arranged such that the more positively charged partner is on
top. For unknown reasons there is a second and third generation, where this pattern is repeated.

u c t 0.002 1.27 173
d s b 0.005 0.093 4.18
νe νµ ντ — — —
e µ τ 0.0005 0.106 1.78

Their masses, in units of GeV (see below), are summarized in this table. There is a broad
hierarchy in the sense that up-type quarks are heavier than down-type quarks (except for
the u and d themselves), and masses grow with the generation number. Due to confinement,
quark masses have a technical character and cannot be measured in experiment (we use the
MS scheme, with a renormalization scale µ = 2 GeV). Upon changing µ their values receive a
common factor; in a strict sense only quark mass ratios are physical. The masses of the charged
leptons e, µ, τ can be measured. Note that the neutrinos νe, νµ, ντ do not have a mass (some
linear combinations ν1, ν2, ν3 have a mass, but to date only upper bounds are known).

1.2 Strong, weak, and electromagnetic force

In GETA we learned that there are three fundamental forces, the strong, weak, and the elec-
tromagnetic force. In addition, there is gravity, but in particle physics it is too weak to matter.

The strong force mediates between two particles, if they both carry a color charge. The weak
force mediates between two particles, if they both carry a weak charge. The electromagnetic
force mediates between two particles, if they both carry an electric charge.

• U-type quarks experience the strong, the weak, and the electromagnetic force
• D-type quarks experience the strong, the weak, and the electromagnetic force
• neutrinos experience only the weak force
• charged leptons experience the weak and the electromagnetic force

These statements can be translated into statements which type of charges are inside a
quark and charged/uncharged lepton. From an algebraic viewpoint a νe is basically a e− with
its electric charge taken out (this does not imply that either one is a composite object).
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strong electromagnetic weak gravitational
g2/M2 ≤ 1 ∼ 1/137.04 10−8 10−37

name gluon photon intermediate vector-boson graviton
symb. g γ W± Z G
mass 0 0 80.4 GeV 91.2 GeV 0
spin 1 1 1 1 2

The properties of the forces are summarized in this table. The first line indicates the force
(in natural units, see below) experienced by two objects carrying a unit charge each, separated
by 1 fm = 10−15 m. For the strong and electromagnetic force this is equivalent to a statement
about the squared coupling g2

st and e2, respectively. For the weak force things are more tricky.
The intermediate vector-bosons are massive, and they receive their mass through the Higgs

mechanism. The other gauge bosons are exactly massless, and this property is linked to an
internal “gauge” symmetry. The g, the γ, and the W±, Z0 have been experimentally verified to
have spin 1. The spin of the graviton is conjectured to be 2, based on the properties of classical
gravitational waves (which are known to exist, and that is quite something).

• gluons couple to color charges, they carry a charge/anti-charge, the gauge group is SU(3)C
• intermediate vector bosons behave similarly with respect to weak charges, the group is SU(2)L
• photons couple to electric charges, they do not carry an electric charge, the group is U(1)Q

The self-coupling property of gluons and intermediate vector-bosons makes these theories
more involved, they are based on non-abelian groups. We shall start with Feynman rules for
a theory with photons only, known as QED. Later, we will extend them to QCD (quantum
chromo-dynamics) and finally to QFD (quantum flavor-dynamics).

1.3 Feynman diagrams

A Feynman diagram represents an amplitude ∈ C for a process (with well-defined in and out
states) to happen via a specified set of internal/intermediate states. Following the principles of
quantum mechanics, this amplitude interferes with the amplitudes of processes with the same
in and out states but different internal (unobservable) states. In other words, this amplitude
is added to the amplitudes of other Feynman diagrams, to give the amplitude of the process
(to a given order in an expansion to be discussed below), and the result is absolute-squared to
give (up to a constant) the probability for this process to happen.

Consider a slight generalization of the two-slit experiment with two intermediate layers, the
first of which has 2 slits, the second of which has 3 slits. To the left of everything there is a
given initial point I, and to the right of everything there is a given final point F . Following
the logics of quantum mechanics, there are in total 6 different paths leading from I to F . Each
one comes with its own amplitude Ai, and we are supposed to add the six amplitudes to get
the overall amplitude A = A1 + ... + A6. In the end we take the absolute square to get the
probability P = |A|2 = |A1 + ...+ A6|2 for the process or path I → F to happen.

In GETA we learned that a Feynman diagram corresponds to a path in this analogy. On
several occasions we drew several Feynman diagrams with a given initial state I and final state
F , and stated that the numbers ∈ C need to be added and absolute squared. So, in this analogy
each Feynman diagram corresponds to a path.

The new part in the Standard Model course is that we will discuss how the number that
each Feynman diagram represents comes about. We will learn that each line and each vertex
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in the i-th Feynman diagram represents a complex number aij, and the amplitude Ai is the
product

∏
j aij, up to an overall factor.

If you reconsider the two-layer multi-slit experiment, you notice that each one of the six
amplitudes Ai is made up from three sub-amplitudes, Ai = ai1ai2ai3. Obviously, ai1 is the
sub-amplitude from the source I to the first layer, ai2 the one between the two layers, and ai3
from the second layer to F . This product decomposition of Ai corresponds to the Feynman
rules that generate the amplitude of a given Feynman diagram from a set of factors that each
one of its lines and vertices stands for.

1.4 Standard Model vertices

You should be familiar with the vertices of the Standard Model; in particular whether or not
a flavor change takes place (difference between W and Z). The content of Fig.1.4 in the book
is key to everything that follows in this course. The coupling at the electromagnetic vertex
is usually called e or gem; one might call it gQ, to refer to the group U(1)Q. The coupling at
the strong vertex is called gS or gst; one might call it gC , to refer to the group SU(3)C . The
couplings at the weak vertices are called gW and gZ , respectively; they are modified versions of
the weak coupling g which one might call gL to refer to the gauge group SU(2)L.

1.5 Mesons and Baryons

Mesons have a net quark content qq̄, where either q is a quark, but they need not be identical,
e.g. D+

s = (cs̄). These quarks are bound together by the strong force which also creates lots of
“virtual” qq̄ pairs (which means that this time q and q̄ are the same flavor). We will learn in
this course how such virtual quark loops contribute to the Feynman diagram (and hence the
amplitude) of a given process.

Baryons have a net quark content qqq, where all three q may be different. Apart from its
flavor content, each q-field has a (suppressed) color index, and the net color must transform
as a singlet. The net quark content does not fully specify the particle; for instance uud could
be a proton or another particle with the same quark content. What matters is whether the
flavors are in a symmetric, antisymmetric, or mixed representation (see below). Again, there
are plenty of virtual quark-antiquark pairs, but they do not modify such group related particle
properties, since they transform as color and flavor singlets.

A meson can be its own antiparticle, a baryon cannot. The freedom to put the quarks into
various representations creates a wealth of possibilities for the resulting mesons and baryons.
You should be familiar with the main contents of Tables C1/C2 in App. C of the book.

1.6 Summary

From a theory viewpoint, the most important part of Chap. 1 in the book is section 1.1 and
the problems. Read everything carefully, and try to solve the problems.
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2 Prerequisites

2.1 Natural units

In particle physics (especially particle theory), one uses “natural units”. One sets ~ = c = 1,
and what this means is that formulas are written “modulo factors of ~ and c”. In other words,
all factors of ~ and c are omitted, since they can be reconstructed in a unique manner.

With this simplification, energy, momentum and mass are all measured in units of MeV =
106 eV or GeV = 109 eV. And times and distances are measured in inverse MeV or inverse
GeV. To convert to SI units, one uses ~ = 1.055 10−34 Js and c = 2.998 108 m/s. With J =
W s = kg m2 s−2 and 1 MeV = 1.602 10−13J it follows that ~c = 197.327 MeV fm, and this is
something to remember. This implies (1 fm)−1 ' 197 MeV or (1 GeV)−1 ' 0.197 fm.

quantity [kg, m, s] [~, c, GeV] natural units
action kg m2 s−1 ~ 1
energy kg m2 s−2 GeV GeV
momentum kg m s−1 GeV/c GeV
mass kg GeV/c2 GeV
time s (GeV/~)−1 GeV−1

length m (GeV/[~c])−1 GeV−1

area m2 (GeV/[~c])−2 GeV−2

speed m s−1 c 1

One unit is hardly used outside of particle physics: 1 b = 1 barn = (10−14 m)2 = 100 fm2.

2.2 Special relativity

You should be familiar with the concept of a “reference frame” which is also called “inertial
system”. The definition says that a particle which is not subject to a force will move uniformly
in this coordinate system. In the old (unprimed) frame a space-time point has the coordinates
r ≡ (ct, x, y, z)t. The same space-time point is given in the primed frame by r′ ≡ (ct′, x′, y′, z′)t.
The new frame S ′ moves in S with speed v, e.g. along the z-axis, with v < c. Hence β ≡ v/c < 1
and γ ≡ (1 − β2)−1/2 > 1. A four-vector is not a collection of four scalars, but a collection of
four objects which transform in a specific way as we change the frame.

A contravariant four-vector transforms like the four coordinates (rµ) ≡ (r•) ≡ ([c]t, x, y, z)t
t′

x′

y′

z′

 =


γ −βγ

1
1

−βγ γ



t
x
y
z

 ⇐⇒ r′µ = Λµ
νr
ν ⇐⇒ (r′•) = (Λ••)(r

•) (2.1)

and the inverse transform is easily found to be [so we conclude (Λ•
•) = (Λ••)

−1 and vice versa]
t
x
y
z

 =


γ βγ

1
1

βγ γ



t′

x′

y′

z′

 ⇐⇒ rρ = Λσ
ρr′σ ⇐⇒ (r•) = (Λ•

•)(r′•) (2.2)
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where γ2 − β2γ2 = 1 is used.
A covariant four-vector transforms like the four coordinates (rµ) ≡ (r•) ≡ ([c]t,−x,−y,−z)t

t′

−x′
−y′
−z′

 =


γ βγ

1
1

βγ γ




t
−x
−y
−z

 ⇐⇒ r′µ = Λµ
νrν ⇐⇒ (r′•) = (Λ•

•)(r•) (2.3)

and the inverse transform for covariant components is
t
−x
−y
−z

 =


γ −βγ

1
1

−βγ γ




t′

−x′
−y′
−z′

 ⇐⇒ rρ = Λσ
ρr
′
σ ⇐⇒ (r•) = (Λ••)(r

′
•) (2.4)

where again γ2 − β2γ2 = 1 is used.
Note that det(Λ) = det(Λ••) = 1. Also det(Λ−1) = det(Λ•

•) = 1. In fact, mathemati-
cians say Λ ∈ SO(1, 3), hence Λ is a hyperbolic rotation in the four-dimensional space with
“pseudometric” diag(1,−1,−1,−1). Specifically, there is an angle ξ, called rapidity, such that

Λ ≡ (Λ••) =


cosh(ξ) − sinh(ξ)

1
1

− sinh(ξ) cosh(ξ)

 , Λ−1 ≡ (Λ•
•) =


cosh(ξ) sinh(ξ)

1
1

sinh(ξ) cosh(ξ)

 (2.5)

and the relation is γ = cosh(ξ), β = sinh(ξ)/γ = tanh(ξ) or ξ ≡ arctanh(β) = 1
2

log(1+β
1−β ). The

standard “velocity superposition” β = β2 ◦ β1 is really the (much simpler) addition ξ = ξ2 + ξ1.
A key statement is that the eigentime interval is a Lorentz scalar, which is to say that

∆s2 ≡ (∆s)2 ≡
{
c2∆t2 −∆x2 −∆y2 −∆z2

c2∆t′2 −∆x′2 −∆y′2 −∆z′2
(2.6)

is the same in every inertial frame (IF). This ∆s2 can be > 0, = 0, or < 0, and we say the two
events are separated timelike, lightlike, or spacelike, respectively. In the first case there is an IF
where they happen at the same spatial point (so that ∆z′ = 0). In the last case there is an IF
where they happen at the same time (so that ∆t′ = 0). Furthermore,

ds2

c2
=

{
dt2(1− dx2+dy2+dz2

c2 dt2
) = dt2(1− β2)

dτ 2(1− 0) [“rest frame”]
(2.7)

and this means the eigentime interval dτ = ds/c can be calculated from every frame through

dτ ≡ dt
√

1− β2 = dt
√

1− v(t)2/c2 (2.8)

and we shall frequently use that dτ is a Lorentz invariant quantity or “Lorentz scalar”.
We use the Einstein summation convention; an index appearing twice – once upstairs and

once downstairs – is summed over. We use this technique to define an indefinite product 〈u, v〉 ≡
u0v0 − ~u~v for two four-vectors u, v. The metric is ηµν with η•• = (ηµν) = diag(1,−1,−1,−1),

ds2 = ηµνds
µdsν = (ds0)2 − (ds1)2 − (ds2)2 − (ds3)2 . (2.9)
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The inverse metric is ηµν , with η•• = (ηµν) = [diag(1,−1,−1,−1)]−1 = diag(1,−1,−1,−1), so

ds2 = ηµνdsµdsν = (ds0)2 − (ds1)2 − (ds2)2 − (ds3)2 . (2.10)

Now we use this technique to write ds2 both in the unprimed and primed frame

ds2 =

{
ηµνdr

µdrν = ηρσdr
ρdrσ

ηµνdr
′µdr′ν = ηµνΛ

µ
ρdr

ρΛν
σdr

σ (2.11)

and from comparing the two right-hand sides we conclude ηρσ = Λµ
ρΛ

ν
σηµν . The pseudo-

metric η•• = (ηµν) is used to “pull down” indices, and η•• = (ηµν) is used to “pull up” indices.
Let tµν be a tensor-field with a contravariant (first) and a covariant (second) index. Then
tρ
σ = ηρµη

σνtµν . Finally, there is the Kronecker symbol δβα which is 1 for α = β and 0 otherwise.
Note this object is not a tensor, and this is why we let it have its two indices atop/below each
other; for a tensor we must maintain the information on the order of its indices.

In short a tensor is an object which transforms like a dyadic product of contravariant or
covariant vectors. The field-strength tensor in classical electrodynamics comes in four varieties,
F ••, F•

•, F ••, F••. They relate to each other via η-operations, and they transform as

F ′µν = Λµ
ρΛ

ν
σF

ρσ , F ′µ
ν

= Λµ
ρΛν

σFρ
σ , F ′µν = Λµ

ρΛν
σF ρ

σ , F
′
µν = Λµ

ρΛν
σFρσ . (2.12)

A tensor of rank 4 with 3 contravariant and 1 covariant indices would transform as

T ′µνρσ = Λµ
αΛν

βΛρ
γΛσ

δTαβγδ (2.13)

and a tensor of rank 0 requires no Λ-factor at all (so it is a Lorentz scalar like dτ or dτ 2).
Last but not least four-derivatives have specific transformation properties. For a boost in

z-direction with Λ•• as above the derivatives in the primed frame are given by

∂z′ =
( ∂z
∂z′

)
∂z +

( ∂t
∂z′

)
∂t , ∂t′ =

(∂z
∂t′

)
∂z +

( ∂t
∂t′

)
∂t , (2.14)

and thanks to the linearity of the Lorentz boots the parentheses can be read off from the inverse
transformation (2.2), so ∂z′ = γ∂z +βγ∂t and ∂t′ = βγ∂z + γ∂t. We summarize this in the form

∂t′
∂x′
∂y′
∂z′

 =


γ βγ

1
1

βγ γ



∂t
∂x
∂y
∂z

 (2.15)

and we emphasize that this is different from (2.1). Hence we can define a derivative operator

∂• ≡ (∂µ) ≡
( ∂

∂xµ

)
=


∂
∂t
∂
∂x
∂
∂y
∂
∂z

 =


∂t
∂x
∂y
∂z

 (2.16)

which transforms as a covariant vector, and another derivative operator

∂• ≡ (∂µ) ≡
( ∂

∂xµ

)
=


∂
∂t

− ∂
∂x

− ∂
∂y

− ∂
∂z

 =


∂t
−∂x
−∂y
−∂z

 (2.17)
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which transforms as a contravariant vector. At first sight it might be perplexing that the deriva-
tives w.r.t. the contravariant components transform as a covariant vector, and the derivatives
w.r.t. the covariant components as a contravariant vector. Next we can use these objects to
define a second-order derivative operator (known as d’Alembert or wave-equation operator)

� ≡ ∂µ∂
µ = ∂µ∂µ =

∂2

∂t2
− ∂2

∂x2
− ∂2

∂y2
− ∂2

∂z2
(2.18)

which indeed transforms as a Lorentz scalar, i.e. it looks exactly the same in every inertial frame,
as its construction via contraction of a covariant and a contravariant index would suggest.

Given that xµ is a four-vector, and only dτ (but not dt) is a Lorentz scalar, it is clear that a
valid four-velocity (which again transforms as a contravariant four-vector) must be defined as

uµ ≡ dxµ

dτ
=
dt

dτ

dxµ

dt
= γ(v)

(
c
~v

)
= γ(β)

(
1
~β

)
(2.19)

where dt = γdτ , see (2.8), has been used. With u2 ≡ uµu
µ = γ2(1− β2) = 1 it follows that any

valid four-velocity has unit length in the Einstein pseudometric.
Given uµ, one defines the four-momentum as pµ = muµ, with m the rest mass of the

particle, and it follows that p2 = m2, or p2 = (mc)2 with c restored. Note that the square on
p is a pseudometric square. With p• = mγ(c, ~v)t and p• = mγ(c,−~v)t we have p2 = pµpµ =
m2γ2[c2 − ~v2] = m2γ2c2[1− β2] = (mc)2, as promised. The three spatial components of p• are
mγ(v)~v, i.e. γ(v) times the Newtonian momentum. Its zeroth component

E ≡ cp0 = γ(v)mc2 (2.20)

is called the relativistic energy. The fixed-length property of p2 unfolds as

p2 = (E/c)2 − ~p2 = m2c2 (2.21)

which is known under the heading “relativistic dispersion relation”. Note that it holds true in
any frame, with frame-dependent E and ~p, but fixed m.

A simple application is a decay 0 → 1 + 2 where four-momentum conservation yields the
invariant mass square of the original particle,

(p(1) + p(2))µ(p(1) + p(2))µ = (p(0))µ(p(0))µ = (m(0)c)2 . (2.22)

Similarly, in a scattering process 1 + 2→ 3 + 4 one defines the Mandelstam variables

s = (p(1) + p(2))2 = (p(3) + p(4))2

t = (p(1) − p(3))2 = (p(2) − p(4))2

u = (p(1) − p(4))2 = (p(2) − p(3))2 (2.23)

each of which happens to be a Lorentz scalar. With a little algebra, the sum can be shown to
equal the sum of the mass squares, i.e. s+ t+ u = (m(1))2 + (m(2))2 + (m(3))2 + (m(4))2.
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2.3 Compatible observables

The key principle of quantum mechanics is the deterministic evolution of the wave function

i~
∂

∂t
ψ(t, ~x) = Hψ(t, ~x) (2.24)

known as the “Schrödinger equation”. If the Hamiltonian H of the system is t-independent, the
closed solution reads ψ(t, ~x) = exp(−iHt/~)ψ(0, ~x), where exp(.) is the matrix exponential. In
the event H has a complete set of eigenstates, it is advisable to first determine them through

Hφi(~x) = Eiφi(~x) (2.25)

which is referred to as “solving the time-independent Schrödinger equation”.
In non-relativistic quantum mechanics it is popular to work in position space. If the

Hamiltonian decomposes into a kinetic and a potential term, H = T + V , the former one
is T = 1

2m
~P 2 = 1

2m
(~

i
∂~x)

2 = − ~2
2m
4, and the potential is usually given in x-space, hence

i~
∂

∂t
ψ(t, ~x) = − ~2

2m
4ψ(t, ~x) + V (~x)ψ(t, ~x) . (2.26)

Alternatively, one might consider things in momentum space. In this case the kinetic term is
just a left-multiplication with 1

2m
~p2, but now the potential term is complicated, since it needs

to be Fourier transformed, and every factor ~x must be emulated through i~∂~p. In short

i~
∂

∂t
ψ̂(t, ~p) =

1

2m
~p2ψ̂(t, ~p) + V (i~∂~p)ψ̂(t, ~p) (2.27)

is the Schrödinger equation in momentum space. Note that the hat denotes Fourier transform
w.r.t. the (one or three) spatial coordinates; the time t is a mere parameter.

Given the indefinite scalar product 〈u, v〉 = uµv
µ = u0v0 − ~u · ~v in the previous subsection,

it makes sense to adopt different conventions for the Fourier transform in the ~x ↔ ~k pair

and the t ↔ ω pair. We are used to ψ(~x) = const
∫
ψ̂(~k)ei~k·~xd3k, and we want to keep this

convention. Therefore we shall choose the opposite sign in the exponential for the other pair,
that is ψ(t) = const

∫
ψ̂(ω)e−iωtdω. Sometimes people use a tilde rather than a hat for the time-

frequency transformation, but we shall not do so, since we shall combine both transformations
in a minute. What is not a convention is that the reverse transformation comes with the
opposite sign. Hence, once we have adopted these conventions for ψ(~x) and ψ(t), we must use

the opposite signs in ψ̂(~k) = const
∫
ψ(~x)e−i~k·~xd3x and ψ̂(ω) = const

∫
ψ(t)eiωtdt. Having fully

specified our conventions, we may combine the two transformations as

ψ(t, ~x) = const

∫
ψ̂(ω,~k) ei[~k·~x−ωt] dω d3k = const

∫
ψ̂(ω,~k) e−i〈k,x〉 dω d3k (2.28)

ψ̂(ω,~k) = const

∫
ψ(t, ~x) e−i[~k·~x−ωt] dt d3x = const

∫
ψ(t, ~x) e+i〈k,x〉 dt d3x (2.29)

and the factor e±i[~k·~x−ωt] can be rewritten as e±i[~p·~x−Et]/~, since ~p = ~~k (“DeBroglie relation”)

and E = ~ω = hν (“Einstein relation”), with |~k| = 2π/λ and λν = c for photons.
An observable is represented by a hermitean operator, say A = A†. The measurement in a

state ψ amounts to
∫
ψ∗Aψ, where the star denotes complex conjugation. The integral is over
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x or p, depending on whether ψ is given in ordinary or momentum space. A universal notation
is given by the bra-ket notation of Dirac. In case of two different states it reads

〈ψ|A|φ〉 =

∫
ψ(x)∗Aφ(x) dx =

∫
ψ(p)∗Aφ(p) dp (2.30)

where the Fourier hat is omitted to make it look more symmetric. The hermiticity (self-
adjointness) of A results in 〈Aψ|φ〉 = 〈ψ|Aφ〉 =

∫
[Aψ(x)]∗φ(x) dx =

∫
ψ(x)∗Aφ(x) dx.

If φ is an eigenstate of A, i.e. Aφ = aφ, the measured value is the eigenvalue a, and the
operator is said to be “sharp” on this specific state. If A has several eigenvalues, the respective
eigenstates are orthogonal (or can be made orthogonal if the eigenvalue is degenerate). For two
observables A and B the question emerges whether they can be simultaneously “sharp”. The
key statement is (with [A,B] ≡ AB −BA the commutator of A and B)

[A,B] = 0 ←→ A,B compatible ←→ A,B have simultaneous eigenvalues a, b (2.31)

and the proof is found in the book. The bottom line can be formulated as follows: quantum
states are labeled by the quantum numbers of a maximal set of compatible operators. A typical
example in atomic physics is based on [L2, Lz] = 0; so states are labeled as |`,m〉.

2.4 Angular momentum

The angular momentum operator has three components, each of which is a bilinear combination
of the respective components of the position operator ~R and momentum operator ~P

~L = ~R ∧ ~P =

Y Pz − ZPyZPx −XPz
XPy − Y Px

 (2.32)

where both ~R and ~P are generic. Only after we decide to work in position/momentum space
one of them acts multiplicatively, while the other one acts through a derivative

pos. space: ~P =
~
i
∇~r

.
= −i∇~r −→ Lx = yPz − zPy

.
= −iy∂z + iz∂y

mom. space: ~R = i~∇~p
.
= +i∇~p −→ Lx = Y pz − Zpy

.
= +ipz∂py − ipy∂pz (2.33)

and with either choice one verifies the basic commutation relations (3 are non-zero, 6 are zero)

[X,Px] = [Y, Py] = [Z, Pz]
.
= i , [X,Py] = ... = 0 . (2.34)

Based on these relations it is straightforward to establish the key relations

[Lx, Ly]
.
= iLz , [Ly, Lz]

.
= iLx , [Lz, Lx]

.
= iLy (2.35)

with obvious cyclic behavior. The commutator relations define the algebra; this is relevant to
particle physics, since the same algebra will show up in the context of flavor quantum numbers.

An important operator is the angular momentum squared operator, defined as

L2 ≡ L2
x + L2

y + L2
z (2.36)
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and it is easy to verify that it commutes with each component of ~L, that is

[L2, Lx] = [L2, Ly] = [L2, Lz] = 0 . (2.37)

However, since these three operators do not commute with each other, a state is defined/labeled
by the quantum numbers of L2 and any one of Lx, Ly or Lz. The standard choice is to use
[L2, Lz] = 0, and this results in the quantum numbers ` and m ≡ mz.

Having adopted the convention of using Lz for the quantum number m (so that m defines the

“sharp” value of the angular momentum projection ~L · ~ez), one defines the “ladder operators”

L+ = Lx + iLy (“raising operator”) (2.38)

L− = Lx − iLy (“lowering operator”) (2.39)

and it is easy to verify that either one commutes with the angular momentum squared operator

[L2, L±] = ... = 0 . (2.40)

It is even easier to work out the commutation relation with Lz

[Lz, L±] = [Lz, Lx]± i[Lz, Ly] = iLy ± i(−iLx) = iLy ± Lx = ±L± (2.41)

and slightly more tedious to work out the decomposition of L2

L2 = ... = L−L+ + Lz + L2
z . (2.42)

Hence it is clear that one should base the labeling of the states on the choice L2, Lz to define
the quantum numbers, and observe the effect of L± on |`,m〉 with −` ≤ m ≤ `, in short

L2|`,m〉 = `(`+ 1)|`,m〉 (2.43)

Lz|`,m〉 = m|`,m〉 (2.44)

L+|`,m〉 = ... =
√
`(`+ 1)−m(m+ 1)|`,m+ 1〉 for m < +` (otherwise 0) (2.45)

L−|`,m〉 = ... =
√
`(`+ 1)−m(m− 1)|`,m− 1〉 for m > −` (otherwise 0) . (2.46)

Finally we recall that spin 1
2

is represented in quantum mechanics through the Pauli matrices

σ1 ≡ σx ≡
(

0 1
1 0

)
, σ2 ≡ σy ≡

(
0 −i
i 0

)
, σ3 ≡ σz ≡

(
1 0
0 −1

)
, (2.47)

with Si = ~
2
σi. The commutator relations [Si, Sj] = εijki~Sk (cyclic behavior) follow from[σx

2
,
σy
2

]
= i

σz
2
,

[σy
2
,
σz
2

]
= i

σx
2
,

[σz
2
,
σx
2

]
= i

σy
2
. (2.48)

2.5 Perturbative expansion

Sometimes the Hamiltonian can be separated into a “big” (and time-independent) contribution
H0 which is easy to deal with, and a “small” (and possibly time dependent) contribution Hint

which makes the full problem hard to deal with, say

H = H0 +Hint with H0 = H0(~x) and Hint = Hint([t, ]~x) (2.49)
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where |||H0||| � |||Hint||| in any reasonable operator norm |||...|||. This Hint([t, ]~x) is called the
“interaction Hamiltonian”. The full Schrödinger equation is thus

i
d

dt
ψ(t, ~x) =

[
H0(~x) +Hint(t, ~x)

]
ψ(t, ~x) (2.50)

and the trick is to use the eigensystem φi(~x) of the unperturbed part H0(~x).
The transition matrix element from initial state |i〉 to final state |f〉 is defined as

Tfi ≡ 〈f |H(t, ~x)|i〉 =

∫
φ∗f (~x)H(t, ~x)φi(~x) d3x = 〈f |H|i〉 (2.51)

and it inherits the dimension of energy from H, since 〈f |i〉 ∈ C. A crude approximation is

Tfi ' 〈f |Hint(t, ~x)|i〉 =

∫
φ∗f (~x)Hint(t, ~x)φi(~x) d3x = 〈f |Hint|i〉 (2.52)

which is the leading order in perturbation theory. A better approximation is

Tfi ' 〈f |Hint|i〉 −
∑
j 6=i

〈f |Hint|j〉〈j|Hint|i〉
Ej − Ei

(2.53)

which is the second order in perturbation theory. The sum is over all intermediate states j which
are different from the initial state i. It takes little imagination to see that this perturbative
series can be systematically improved. The next term would involve two sets of intermediate
states, enumerated as k and j, along with the energy differences Ek − Ej and Ej − Ei.

No matter at which order in perturbation theory one has determined the matrix element
Tfi, its modulus square is proportional to the transition rate Γfi. Fermi’s golden rule says

Γfi = 2π|Tfi|2ρ(Ei) (2.54)

where ρ(Ei) = dn
dEf
|Ei is the density of states in the out-Fockspace (see QFT course). These

“phase space” considerations are presented in Chap. 3 of the book. We skip it in the interest
of time, but it is important to any experiment in particle physics.

2.6 Mathematics

• You should be familiar with linear algebra, including elementary spectral representation.
• You should be familiar with full calculus, including complex functions and contour integrals.
• You should be familiar with distributions, see e.g. App. A of the book.
• You should be familiar with the (complex) Fourier transform.
• You should be familiar with the concept of Green functions, e.g. from TP2.

2.7 Summary

From a theory viewpoint, all three sections of Chap. 2 in the book are relevant. Read everything
carefully, and try to solve the problems.
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3 Relativistic field equations

3.1 Klein-Gordon equation

The Klein-Gordon equation is the relativistic successor of the Schrödinger equation. The latter
equation is based on the dispersion relation E = ~p2/(2m), so the former one must be based on

E2 = ~p2 +m2. Thinking of ψ(x) ∝ ei[~p~x−Et] we have ∂t ∼ −iE and ~∇ ≡ ∂~x ∼ i~p, hence

(
�+m2

)
ψ(t, ~x) = 0 with � ≡ ∂µ∂

µ ≡ d2

dt2
−4 ≡ ∂2

t −
3∑

k=1

∂2
k (3.1)

has the required properties (�, m2 and 0 transform as Lorentz scalars, while ψ is unchanged
under a boost, provided the argument xµ is replaced by the boosted x′µ = Λµ

νx
ν).

There is a problem with the usage of (3.1) as a one-particle wave equation. It implements
E2 = ~p2 + m2, so mathematically E = ±

√
~p2 +m2. Physicswise, however, a negative energy

makes no sense. In classical mechanics, one can restrict the solution space to the positive square
root. In quantum mechanics, one cannot; the solutions must form a complete set of states.
These problems manifest themselves in the form of a negative probability density, ρ(t, ~x) < 0.
Consider ∂2

t ψ = 4ψ−m2ψ along with ∂2
t ψ
∗ = 4ψ∗−m2ψ∗. By taking ψ∗ times the first minus

ψ times the second, one has ψ∗∂2
t ψ−ψ∂2

t ψ
∗ = ψ∗(~∇2−m2)ψ−ψ(~∇2−m2)ψ∗ = ψ∗~∇2ψ−ψ~∇2ψ∗.

This can be re-written as ∂t(ψ
∗∂tψ − ψ∂tψ∗) = ~∇(ψ∗~∇ψ − ψ~∇ψ∗). Hence, with an extra i,

∂tρ(t, ~x) + ~∇~j(t, ~x) = 0 with
ρ ≡ +i(ψ∗∂tψ − ψ∂tψ∗)
~j ≡ −i(ψ∗~∇ψ − ψ~∇ψ∗) (3.2)

and a plane wave solution has ρ = 2|N |2E ≷ 0 and ~j = 2|N |2~p. The ρ < 0 problem has solution
within relativistic quantum mechanics. There is a natural solution, though, in the context of a
relativistic field theory (“many particle theory”, “second quantization”). There, equation (3.1)
can, in principle, be used to describe an uncharged pion field or the physical Higgs field (in
reality the pion is part of a triplet, and the Higgs is part of a doublet), without interaction.

3.2 Dirac equation

Dirac was looking for an equation that would be first-order for both space and time, say

i∂tψ(t, ~x) =
(
− iαx∂x − iαy∂y − iαz∂z + βm

)
ψ(t, ~x) (3.3)

with unknown objects αx, αy, αz and β (later they turn out to be 4 × 4 matrices). But he
requested that ψ = ψ(x) = ψ(t, ~x) would also satisfy the Klein-Gordon equation (3.1). Hence

∂2
t ψ = α2

x∂
2
xψ + α2

y∂
2
yψ + α2

z∂
2
zψ − β2m2ψ

+
{
αx, αy

}
∂x∂yψ +

{
αy, αz

}
∂y∂zψ +

{
αz, αx

}
∂z∂xψ

+ i
{
αx, β

}
m∂xψ + i

{
αy, β

}
m∂yψ + i

{
αz, β

}
m∂zψ

(!)
= ∂2

xψ + ∂2
yψ + ∂2

zψ −m2ψ (3.4)

with {A,B} ≡ AB +BA the anti-commutator of A and B, and this implies a set of relations

α2
x = α2

y = α2
z = β2 = 1 ,

{
αi, β

}
= 0 ,

{
αj, αk

}
= 0 (j 6= k) (3.5)
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among the unknown objects. They imply tr(αi) = 0, tr(β) = 0, and α, β can have eigenvalues
±1 only. Furthermore α†i = αi and β† = β follow from the hermiticity of the Dirac Hamiltonian

HD ≡ ~α~P + βm . (3.6)

The smallest possible representation for d space-time dimensions is 2d/2 dimensional; for d = 4

αi ≡ σ1 ⊗ σi =

(
0 σi
σi 0

)
, β ≡ σ3 ⊗ I2 =

(
I2 0
0 −I2

)
(3.7)

is known as the Dirac-Pauli representation of the αi, β (with I2 the identity in 2 dimensions).
The bottom line is that ψ(x) is not a scalar wavefunction but a spinor field

ψ(t, ~x) =


ψ1(t, ~x)
ψ2(t, ~x)
ψ3(t, ~x)
ψ4(t, ~x)

 (3.8)

with 2d/2 components (so there is some internal degree of freedom to be discussed below).
Later we will encounter other representations, but they relate to (3.7) unitarily, so

α̃i = UαiU
† , β̃ = UβU † with U ∈ U(4) . (3.9)

With αi, β defined in (3.7) we can summarize the Dirac equation in the compact form(
i∂t + iαx∂x + iαy∂y + iαz∂z − βm

)
ψ(t, ~x) = 0 (3.10)

but it is not yet obvious that this equation is form-invariant under boosts and rotations.

3.3 Probability density/current

Repeating the probability density/current consideration of the Klein-Gordon subsection for a
field ψ(t, ~x) which satisfies the Dirac equation (3.10), one finds

d

dt

(
ψ†ψ︸︷︷︸
ρ(t,~x)

)
+ ~∇ ·

(
ψ†~αψ︸ ︷︷ ︸
~j(t,~x)

)
= 0 with ~∇ · ~γ ≡ ∇xγx + ...+∇zγz (3.11)

and the bottom line is that now ρ(t, ~x) ≥ 0 is guaranteed, since

ρ = ψ†ψ =
(
ψ∗1 ψ∗2 ψ∗3 ψ∗4

)
ψ1

ψ2

ψ3

ψ4

 = ψ∗1ψ1 + ...+ ψ∗4ψ4 = |ψ1|2 + ...+ |ψ4|2 ≥ 0 . (3.12)
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3.4 Spin-1/2 property and Lorentz covariance

In quantum mechanics one has the time evolution property of an expected value

d

dt

〈
O
〉

= i
〈[
H,O

]〉
(3.13)

where 〈.〉 refers to a single state ψ or an ensemble of such states (this equation holds both in
the Schrödinger picture and in the Heisenberg picture). The Li are constants of motion, since

HS ≡
1

2m
~P 2 , ~L ≡ ~R ∧ ~P −→ [HS, ~L] = ~0 . (3.14)

Repeating this calculation for the Dirac Hamiltonian (3.6) one finds

[HD, ~L] = ... = −i~α ∧ ~P
so any Li is not conserved. Fortunately, this is not the end of the story; the spin operator

~S ≡ 1

2
~Σ ≡ 1

2

(
~σ 0
0 ~σ

)
(3.15)

is not a constant of motion [for a field satisfying the Dirac equation (3.10)] either

[HD, ~S] = ... = +i~α ∧ ~P
but with opposite sign. Hence we should consider the total spin operator

~J ≡ ~L+ ~S =⇒ [HD, ~J ] = [HD, ~L] + [HD, ~S] = −i~α ∧ ~P + i~α ∧ ~P = ~0 (3.16)

to find a constant of motion for a field ψ(x) which satisfies the Dirac equation.
The definition (3.15) means the algebra of S1, S2, S3 is identical to the algebra of 1

2
σ1,

1
2
σ2,

1
2
σ3[

S1, S2

]
= iS3 (cycl.) . (3.17)

Recall that we should label states through the effect of a maximal set of operators. For a Dirac
field ψ(x) one chooses ~S2 and Sz = S3, so states are labeled through |s,ms〉. Furthermore

~S2 ≡ S2
1 + S2

2 + S2
3 =

1

4

(
σ2

1 + σ2
2 + σ2

3 0
0 σ2

1 + σ2
2 + σ2

3

)
=

1

4

(
3 0
0 3

)
=

3

4
I4 (3.18)

~S2|s,ms〉 =

{
s(s+ 1) |s,ms〉

3
4

|s,ms〉
=⇒ s =

1

2
(3.19)

whereupon the Dirac equation (3.10) is found to describe a spin-1/2 particle.
By acting on the Dirac equation with β from the left

iβ
∂ψ

∂t
+ iβαx

∂ψ

∂x
+ ...+ iβαz

∂ψ

∂z
− β2mψ = 0 (3.20)

γ0 ≡ β , γ1 ≡ βαx ≡ βα1 , γ2 ≡ βαy ≡ βα2 , γ3 ≡ βαz ≡ βα3 (3.21)

one brings it to a form (
iγ0∂t + iγ1∂x + ...+ iγ3∂z −m

)
ψ(t, ~x) = 0 (3.22)

(
iγµ∂µ −m

)
ψ(x) with x = x• = (ct, x1, x2, x3)t (3.23)

which satisfies the requirement of form invariance under boosts/rotations (see book App. B).
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3.5 Dirac-Clifford algebra

The complex 4× 4 matrices (for d = 4 space-time dimensions) satisfy

(γ1)2 = βαxβαx = −β2α2
x = −I4

γ1γ2 = βαxβαy = −β2αxαy = β2αyαx = −βαyβαx = −γ2γ1

and this can be summarized in the algebra{
γµ, γν

}
= 2ηµνI4 . (3.24)

Furthermore, the hermiticity of the ~α, β implies the mixed hermiticity/antihermiticity property

(γ0)† = γ0 , (γk)† = −γk for k ∈ {1, .., 3} . (3.25)

Specifically in the Dirac-Pauli representation (3.7) the γ-matrices take the form

γ0 ≡ σ3 ⊗ I2 =

(
I2 0
0 −I2

)
, γk ≡ iσ2 ⊗ σk =

(
0 σk
−σk 0

)
(3.26)

so this is the representation where γ0 = diag(1, 1,−1,−1) is diagonal. In another representation

γ̃µ = UγµU † with U ∈ U(4) (3.27)

the γ-matrices would be unitarily related. From this property it follows that the Clifford
algebra (3.24) holds for any representation, and a similar statement can be made for the her-
miticity/antihermiticity property (3.25).

Upon using the γ-matrices the probability density and current take the convenient form

ρ(x) = ψ†(x)ψ(x) = ψ†(x)γ0γ0ψ(x)
~j(x) = ψ†(x)~αψ(x) = ψ†(x)γ0~γψ(x)

}
−→ jµ(x) ≡ ψ†(x)γ0γµψ(x) (3.28)

and the continuity equation (for the probability density/current) looks Lorentz covariant

∂µj
µ(x) = 0 (3.29)

provided the object [which involves the adjoint spinor ψ̄(x)]

jµ(x) = ψ̄(x)γµψ(x) with ψ̄(x) ≡ ψ†(x)γ0 =
(
ψ∗1(x) ... ψ∗4(x)

)
γ0 (3.30)

transforms like a contravariant four-vector. The adjoint spinor is always a row-vector, and
specifically in the Dirac-Pauli representation (3.7) it takes the form

ψ̄(x)
DP rep.

=
(
ψ∗1 ψ∗2 ψ∗3 ψ∗4

)(I2

−I2

)
=
(
ψ∗1(x) ψ∗2(x) −ψ∗3(x) −ψ∗4(x)

)
(3.31)

while in other representations it looks more complicated (since then γ0 is not diagonal).

16



3.6 Free-field solutions

It is straight-forward to Fourier transform the Dirac equation (3.23). With the definition (2.28)

it follows that ∂t = −iω = −iE and ∂~x ≡ ~∇ = i~k = i~p, where ~ = 1 is adopted. Hence

(γµi∂µ −m)ψ(x) = 0 ⇐⇒ (γµpµ −m)ψ̂(p) = 0 (3.32)

where p• = (pµ) = (E, ~p) or p• = (pµ) = (E,−~p) has been used. It is common practice to
consider ψ(x) = ψ(t, ~x) for one fixed four-momentum

ψ(t, ~x) = u(E, ~p) ei[~p~x−Et] = u(E, ~p) e−ipµxµ = u(E, ~p) e−ipµxµ (3.33)

so that the momentum spinor u is the Fourier transform of ψ evaluated at that E and ~p. With
this convention the Dirac equation (3.32) can be written as (γµpµ −m)u(E, ~p) = 0.

To find solutions to (3.32) let us first consider spinors at rest, ~p = ~0. Then Eγ0u = mu
means Ediag(1, 1,−1,−1)u = mu, and this has four independent solutions

u1(E,~0)︸ ︷︷ ︸
Sz=+ 1

2

= N


1
0
0
0

 , u2(E,~0)︸ ︷︷ ︸
Sz=− 1

2

= N


0
1
0
0


︸ ︷︷ ︸

E>0

, u3(E,~0)︸ ︷︷ ︸
Sz=+ 1

2

= N


0
0
1
0

 , u4(E,~0)︸ ︷︷ ︸
Sz=− 1

2

= N


0
0
0
1


︸ ︷︷ ︸

E<0

where u1, u2 work only for E > 0, and u3, u4 for only for E < 0. Verify that Sz = 1
2
I2⊗ σz acts

as indicated. Note that the i in ui is not an index but part of the name of the spinor.
Now for solutions with ~p 6= ~0. With ~p · ~x = px = p1 = −p1 the Dirac equation reads(

γ0E − [γ1px + γ2py + γ3pz]−m
)
u = 0 (3.34)

with γ0E = diag(E,E,−E,−E), m = diag(m,m,m,m) and a non-diagonal middle term

[γ1px + γ2py + γ3pz] =

(
0 ~σ~p
−~σ~p 0

)
, where ~σ~p =

(
pz px − ipy

px + ipy −pz

)
. (3.35)

Denoting the two “upper” and “lower” components uupp and ulow, respectively, we have(
(E −m)I −~σ~p

~σ~p −(E +m)I

)(
uupp

ulow

)
= 0 (3.36)

or (E −m)uupp = (~σ~p)ulow and (~σ~p)uupp = (E + m)ulow with ~σ~p given above. Hence, defining
ulow to be a (2-dimensional) unit-vector specifies uupp, and vice versa. In explicit terms

ulow =

{(
1
0

)
,

(
0
1

)}
−→ uupp =

~σ~p

E −m

{(
1
0

)
,

(
0
1

)}

uupp =

{(
1
0

)
,

(
0
1

)}
−→ ulow =

~σ~p

E +m

{(
1
0

)
,

(
0
1

)}
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and this means that a complete set of four four-spinors for a given (E, ~p) combination is

u1 = N


1
0
pz

E+m
px+ipy
E+m

 , u2 = N


0
1

px−ipy
E+m
−pz
E+m

 , u3 = N


pz

E−m
px+ipy
E−m

1
0

 , u4 = N


px−ipy
E−m
−pz
E−m

0
1

 (3.37)

with N =
√
E +m to achieve the proper normalization of 2E particles per unit-volume. Note

that none of these spinors is an eigenvector to Sz (unless ~p = ~0). Note, finally, that it is
impossible to interpret all four solutions as having E > 0, since then the exponent of the
wavefunction ψ(t, ~x) = u exp(i[Et − ~p~x]) would be the same for all of them. In consequence,
they would no longer be independent, for instance u1 = pz

E+m
u3 + px+ipy

E+m
u4. In summary:

• any of u1,2,3,4(E, ~p) satisfies the Dirac equation and thus E2 − ~p2 = m2

• u1, u2 have E = +
√
~p2 +m2 > 0 and two spin components (but Sz = ±1

2
only for ~p→ ~0)

• u3, u4 have E = −
√
~p2 +m2 < 0 and two spin components (but Sz = ±1

2
only for ~p→ ~0)

• problem with ρ < 0 is gone, the one with E ≷ 0 persists; how shall we interpret E < 0 ?
• spinors (3.37) refer to Dirac-Pauli representation; transformed in other representations

3.7 Interpretation – Dirac versus Stückelberg-Feynman

Consider Fig. 4.1 in the book. Energy levels are discrete for a finite spatial extent; in infinite
volume there is a continuum above +m (and ditto below −m). The two columns for a given E
indicate the two sz values. The Dirac interpretation matches the standard view in solid state
physics; the “vacuum” corresponds to a filled Fermi sea. A hole in the set of states with E < 0
behaves like a state with more energy (less negative energy) than the “vacuum” and quantum
numbers opposite to what is needed to fill the hole. Accordingly, a photon that creates a hole
at E = −me along with an electron at E = +me needs more energy than 2me[c

2], the surplus
going into kinetic energy of the e+e− pair. This, together with the experimental discovery of
the positron (Anderson, 1933) created a triumph for Dirac. However, there is a conceptual
problem. The Dirac interpretation rests on the Pauli principle; it works only for fermions. But
in experiment antiparticles are found to exist for bosons, too.

In the previous subsection we stressed that we cannot change the phase factor, but

exp(i[Et− ~p~x]) = exp(i[(−E)(−t)− ~p~x])

suggests that we can flip the sign of E if we also change the arrow of time. The modern inter-
pretation, due to Stückelberg and Feynman, is that the E < 0 solutions to the Dirac equation
are seen as negative energy particles which move backward in time. Due to the (trivial) mathe-
matical identity listed above, this is equivalent to physical positive energy antiparticles moving
forward in time. The difference is illustrated in Fig. 4.2 in the book (time increases from the left
to the right, the y-axis is topology not space-time). In the left panel a positive energy electron
produces a photon and thus converts itself to a negative energy electron moving backward in
time (Dirac view). Here the arrows show the flow of the quantum number associated with the
state indicated next to the line (hence of the e− in both cases). In the right panel a positive
energy electron annihilates with a positive energy positron to produce a photon with energy
> 2me[c

2] > 0 (Stückelberg-Feynman view). Again the arrows show the flow of the quantum
number associated with the state indicated next to the line (one e−, one e+ charge).
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In the remainder of this course we will use the modern Stückelberg-Feynman interpretation.
Thus we shall use Feynman diagrams as in the right panel of Fig. 4.2 of the book. But we (and
the book) will change the convention for the direction of the arrows. The arrows will always
refer to the quantum numbers associated with the field (in QFT) that is used to describe
both the particle and the antiparticle. Since in QED the electron-field ψ(x) describes both the
electrons and the positrons, the arrows will always indicate the flow of the e− charge.

In principle, one could perform all calculations with the spinors u1, u2, u3, u4. But one would
need to keep in mind that the latter two come with a phase factor opposite to the factor ei[~p~x−Et]

used for u1, u2. In addition, u3, u4 are labeled by an E which is minus their energy and a ~p
which is minus their physical momentum. The convenient solution is to keep u1, u2 with the
phase factor ei[~p~x−Et] unchanged. But u3, u4 are traded for v1, v2 under the terms

v1(E, ~p)e−i[~p~x−Et] ≡ u4(−E,−~p)ei[−~p~x−(−E)t]

v2(E, ~p)e−i[~p~x−Et] ≡ u3(−E,−~p)ei[−~p~x−(−E)t]

which means that we consistently substitute E → −E and ~p→ −~p both in the spinor and the
phase factor (for these two guys). Hence we end up (again) having four independent states

u1 = N


1
0
pz

E+m
px+ipy
E+m

 , u2 = N


0
1

px−ipy
E+m
−pz
E+m

 , v1 = N


px−ipy
E+m
−pz
E+m

0
1

 , v2 = N


pz

E+m
px+ipy
E+m

1
0

 (3.38)

each one to be used with E > 0, and N =
√
E +m to achieve the proper normalization of 2E

particles per unit-volume. Still, none of these spinors is an eigenvector to Sz (unless ~p = ~0). In
short the Stückelberg-Feynman reinterpretation yields the following paradigm:

• states u1, u2 represent positive energy particles, with ψ(t, ~x) = u(E, ~p)ei[~p~x−Et]

• states v1, v2 represent positive energy antiparticles, with ψ(t, ~x) = v(E, ~p)e−i[~p~x−Et]

• all spinors u1, u2, v1, v2 are labeled by their physical energy E > 0 and physical momentum ~p
• throughout t increases; in Feynman diagrams t flows from the left to the right
• spinors (3.38) refer to Dirac-Pauli representation; transformed in other representations

3.8 Charge conjugation, parity, spin and helicity

There are three discrete transformations, charge C, parity P , and time reversal T . An interac-
tion may violate any of C,P, T , but in a local relativistic QFT the product CPT (in any order)
must be respected (“CPT theorem”). Here we discuss how C and P act on Dirac spinors.

In quantum mechanics the coupling of a particle with charge q to an electromagnetic field is
implemented by the minimal substitution E → E−qφ and ~p→ ~p−q ~A, with φ(t, ~x) and ~A(t, ~x)

the scalar and vector potential, respectively. Given p• = (E, ~p) and A• = (φ, ~A) we can write
this as pµ → pµ − qAµ or pµ → pµ − qAµ. With the phase factor e−i[Et−~p~x] = e−ipx = e−ipµxµ of
(2.28) we have ∂µ = −ipµ or pµ = i∂µ. The minimal substitution in covariant language is thus

i∂µ → i∂µ − qAµ ⇐⇒ pµ → pµ − qAµ (3.39)

and this means that the free-field Dirac equation (3.32) takes the more general form

(γµi∂µ − qγµAµ −m)ψ(x) = 0 ⇐⇒ (γµpµ − qγµAµ −m)ψ̂(p) = 0 (3.40)
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if the particle described by the field ψ has charge q. In particle physics it is common practice,
whenever ψ describes the 1st-generation lepton field, to consider the e− the particle and the e+

the antiparticle. However, there are two conventions for e, for some it is the positron charge
(e > 0), for some it is the electron charge (e < 0). The book follows the first convention, so the
charge of the electron is −e. In this case the Dirac equation for the electron field reads

(γµ[i∂µ + eAµ]−m)ψ(x) = 0 or (γµ[∂µ − ieAµ] + im)ψ(x) = 0 . (3.41)

The charge operation acts on the Dirac field ψ, and hence on the spinors u1,2, v1,2, as

C : ψ(x) 7−→ ψ′(x) ≡ C[ψ(x)] ≡ iγ2ψ∗(x) (3.42)

and this means that C is an involution, i.e. C2 = 1. That γ2 is used in conjunction with
complex conjugation is not so surprising, since in the DP-representation it is the only one
which changes sign under complex conjugation, (γ0)∗ = γ0, (γ1)∗ = γ1, (γ2)∗ = −γ2, (γ3)∗ = γ3.
For ψ(t, ~x) = u1(E, ~p)e−i[Et−~p~x] the transformed wavefunction is ψ′ = Cψ = iγ2u∗1(E, ~p)ei[Et−~p~x].
For the spinor part we invoke the explicit form of γ2 in the DP-representation to find

iγ2u∗1 = i


−i

i
i

−i

√E +m


1
0
pz

E+m
px+ipy
E+m


∗

=
√
E +m


px−ipy
E+m
−pz
E+m

−0
1

 = v1

iγ2u∗2 = i


−i

i
i

−i

√E +m


0
1

px−ipy
E+m
−pz
E+m


∗

=
√
E +m


−pz
E+m

−px+ipy
E+m

−1
0

 = −v2

where the last minus sign would be absent if we would have defined v2 in (3.38) differently.
Hence, ignoring this sign issue, the action of C can be summarized as

u1e
−i[Et−~p~x] C←→ v1e

i[Et−~p~x] (3.43)

u2e
−i[Et−~p~x] C←→ v2e

i[Et−~p~x] (3.44)

where the complex conjugation turned the phase factors around. Hence the four components
stand four two spin orientations [in a complicated form, see below], and the particle/antiparticle
content, where the latter relation is not so complicated, since (3.38) provides a convenient basis.

An important point to keep in mind is that the operations which give the physical energy
and the physical momentum of an antiparticle are not HD and ~P , respectively, but −HD and
−~P . This is consistent with the antiparticle spinor carrying the opposite phase, i.e. ψ = veipx =
vei[Et−~p~x], as opposed to ψ = ue−ipx = ue−i[Et−~p~x] for a particle spinor. Hence, a factor E > 0
is pulled down by acting with −i∂t on the antiparticle, and with (the usual) i∂t on a particle.

Similarly, a factor ~p is pulled down by acting with i~∇ on the antiparticle, versus (the usual)

−i~∇ for a particle. This impacts the angular momentum operator; for a particle ~L = −i~R ∧ ~∇
generates the physical angular momentum, while for an antiparticle +i~R ∧ ~∇ will do the job.
At this point one might wonder what happens to a total angular momentum, for particles given
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by ~J = ~L+ ~S. Fortunately, for antiparticles also the physical spin in a given direction is given
through −~S rather than ~S (for S2 = ~S2 it makes no difference anyway). Recall that

Sz =
1

2
Σz =

1

2

(
σz

σz

)
=

1

2
diag(1,−1, 1,−1) (3.45)

and this gives the result of Sz on a u or v spinor where the object flies in the ±z direction

Szu1(E, 0, 0,±p) = +
1

2
u1(E, 0, 0,±p)

Szu2(E, 0, 0,±p) = −1

2
u2(E, 0, 0,±p)

Szv1(E, 0, 0,±p) = −1

2
v1(E, 0, 0,±p)

Szv2(E, 0, 0,±p) = +
1

2
v2(E, 0, 0,±p) (3.46)

but the physical spin in z-direction is the opposite of the prefactor for v1,2. Hence, if everybody
flies in the z-direction, u1 is spin-up, u2 is spin-down, v1 is spin-up, v2 is spin-down. If everybody
flies in the −z-direction, u1 is spin-up, u2 is spin-down, v1 is spin-up, v2 is spin-down relative to
the original +z-direction. However, in this case it would be more useful to have the preferred
direction also pointing in the −z-direction. Hence, relative to the direction of flight, u1 is
spin-down, u2 is spin-up, v1 is spin-down, v2 is spin-up (see Fig. 4.3 in the book).

What we have introduced, with this consideration, is the concept of helicity

H ≡
~S~p

|~p|
=

Σxpx + Σypy + Σzpz
2|~p|

=
1

2|~p|

(
~σ~p

~σ~p

)
(3.47)

or spin in the direction of flight (it replaces Sz, but not S2). This is useful, because (unlike in
non-relativistic QM) the operator Sz is not a constant of motion. The relations

[HD, S
2] = 0 , [S2, Sz] = 0 , [Sz, HD] 6= 0

[HD, S
2] = 0 , [S2, H ] = 0 , [H,HD] = 0 (3.48)

tell us that it makes sense to select {HD, S
2, H} as our maximal set of compatible operators.

However, there is a price to pay, since the resulting helicity h is not a Lorentz-invariant quantity.
An explicit form of u1,2, v1,2 follows from requesting that it is an eigenstate of H:

1

2p

(
~σ~p

~σ~p

)(
uupp

ulow

)
(!)
= λ

(
uupp

ulow

)
1

4p2
(~σ~p)2uupp = λ2uupp with (~σ~p)2 = ~p2 = p2 −→ λ = ±1

2

(~σ~p)uupp = (E +m)ulow −→ ulow = 2λ
p

E +m
uupp

~p = p

sin θ cosϕ
sin θ sinϕ

cos θ

 −→ 1

2p
(~σ~p) =

1

2

(
cos θ sin θ e−iϕ

sin θ eiϕ − cos θ

)
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uupp =

(
a
b

)
−→

(
cos θ sin θ e−iϕ

sin θ eiϕ − cos θ

)(
a
b

)
(!)
= 2λ

(
a
b

)
−→ b

a
=

2λ− cos θ

sin θ
eiϕ

case λ = +
1

2
−→ b

a
=

+1− cos θ

sin θ
eiϕ =

+2s2

2sc
eiϕ = +

sin θ
2

cos θ
2

eiϕ = + tan
θ

2
eiϕ

case λ = −1

2
−→ b

a
=
−1− cos θ

sin θ
eiϕ =

−2c2

2sc
eiϕ = −

cos θ
2

sin θ
2

eiϕ = − cot
θ

2
eiϕ

Hence, if an object has physical momentum ~p = p~e, with ~e given by θ measured from the “north
pole” and ϕ, defining c ≡ cos θ

2
and s ≡ sin θ

2
lets the spinors u1,2, v1,2 take the form

u↑ ∝


c
seiϕ

p
E+m

c
p

E+m
seiϕ

 , u↓ ∝


−s
ceiϕ

p
E+m

s

− p
E+m

ceiϕ

 , v↑ ∝


p

E+m
s

− p
E+m

ceiϕ

−s
ceiϕ

 , v↓ ∝


p

E+m
c

p
E+m

seiϕ

c
seiϕ

 (3.49)

where we omitted the factor
√
E +m which ensures 2E particles/antiparticles per unit volume.

People say u↑ and v↑ have right-handed helicity (i.e. in the direction of flight), while u↓ and v↓
have left-handed helicity (i.e. against the direction of flight). Later we shall introduce the notion
of “right-handed chirality” and “left-handed chirality”. To avoid confusion it would be better
to speak of “forward helicity” and “backward helicity”, but this is not commonly accepted.

The parity operation acts on the Dirac field ψ, and hence on the spinors u1,2, v1,2, as

P : ψ(x) 7−→ ψ′(x′) ≡ P [ψ(x)] ≡ γ0ψ(x) (3.50)

and this means that P is an involution, i.e. P 2 = 1. That γ0 is used (without any complex
conjugation) is not a surprise either, since in the DP-representation it is the only one which is
hermitean and diagonal. The action on the four spinors at rest is

Pu1 = γ0u1 = diag(1, 1,−1,−1)
√

2m(1, 0, 0, 0)t =
√

2m(+1, 0, 0, 0)t = +u1

Pu2 = γ0u2 = diag(1, 1,−1,−1)
√

2m(0, 1, 0, 0)t =
√

2m(0,+1, 0, 0)t = +u2

P v1 = γ0v1 = diag(1, 1,−1,−1)
√

2m(0, 0, 0, 1)t =
√

2m(0, 0, 0,−1)t = − v1

P v2 = γ0v2 = diag(1, 1,−1,−1)
√

2m(0, 0, 1, 0)t =
√

2m(0, 0,−1, 0)t = − v2 (3.51)

and as a result one finds that the intrinsic parity (for ` = 0) of a fermion-antifermion pair is
P (ff̄) = −1. Perhaps you recall that the corresponding result for bosons is P (bb̄) = +1.

3.9 Summary

From a theory viewpoint all sections of Chap. 4 in the book are relevant. Read them carefully,
and try to solve the problems. You should remember that the 4 components of a Dirac spinor
describe particle/antiparticle and spin along a preferred direction (e.g. that of flight). Details
depend on the chosen representation of the Dirac-Clifford algebra of γ-matrices.
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4 Feynman diagrams in QED

4.1 Time-ordered perturbation theory

We discussed Fermi’s golden rule Γfi = 2π|Tfi|2ρ(Ei), and how the perturbative expansion

Tfi ' 〈f |Hint|i〉 −
∑
j 6=i

〈f |Hint|j〉〈j|Hint|i〉
Ej − Ei

+
∑
k 6=j 6=i

〈f |Hint|k〉〈k|Hint|j〉〈j|Hint|i〉
(Ek − Ej)(Ej − Ei)

− ... (4.1)

of the transition matrix element Tfi (from some initial state i to some final state f) fits into the
framework of non-relativistic QM. Here Hint behaves like a classical potential, and the “particle”
interacts with it once, twice, three times, and so on (see Fig. 5.1 in the book). However, there
are two things which strike us as odd. First, in general scattering off a potential violates
three-momentum (unless it’s an “effective potential” e.g. of the sun-earth system), since the
potential acts like a reservoir of momentum (energy is conserved). Second, the whole setup is
not relativistically covariant (and the energy/momentum-dichotomy just underlines this).

Consider a process a, b→ c, d which proceeds via an intermediate state X in the t-channel
(see Fig. 5.2 in the book). In a given reference frame, two time orderings are possible:
(a) particle a disintegrates a→ X, c, subsequently X, b→ d, i.e. X combines with b to form d
(b) particle b disintegrates b→ X̄, d, subsequently X̄, a→ c, i.e. X̄ combines with a to form c
A similar pair of time-ordered diagrams can be drawn if X is formed in the u-channel (under
which condition ?). But there is only one time-ordered diagram in the s-channel (why ?).

Quantum-mechanical reasoning suggests that the two transition amplitudes take the form

T
(a)
fi =

〈f |V |j〉〈j|V |i〉
Ei − Ej

=
〈d|V |X + b〉〈c+X|V |a〉

(Ea + Eb)− (Ec + EX + Eb)

T
(b)
fi =

〈f |V |j〉〈j|V |i〉
Ei − Ej

=
〈c|V |X̄ + a〉〈d+ X̄|V |b〉

(Ea + Eb)− (Ed + EX̄ + Ea)
(4.2)

for process (a) and (b), respectively. The next step is to dress the transition amplitudes
Tfi with phase-space factors to convert them into (Lorentz) invariant matrix elements Mfi.
Assuming the elementary scatterings are simple, 〈j|V |i〉 = 〈c + X|V |a〉 = ga/

√
2Ea2Ec2EX

and 〈f |V |j〉 = 〈d|V |X + b〉 = gb/
√

2Eb2Ed2EX , the invariant matrix elements take the form

M
(a)
fi =

√
2Ea2Eb2Ec2Ed T

(a)
fi =

1

2EX

gagb
Ea − Ec − EX

M
(b)
fi =

√
2Ea2Eb2Ec2Ed T

(b)
fi =

1

2EX

gagb
Eb − Ed − EX

(4.3)

where we used EX = EX̄ , and by combining the two we arrive at the invariant matrix element

Mfi ≡M
(a)
fi +M

(b)
fi =

gagb
2EX

( 1

Ea − Ec − EX
+

1

Eb − Ed − EX

)
. (4.4)

Thanks to overall energy conservation Eb − Ed = −Ea + Ec this can be rewritten as

Mfi =
gagb
2EX

( 1

Ea − Ec − EX
− 1

Ea − Ec + EX

)
=

gagb
(Ea − Ec)2 − E2

X

(4.5)
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and we now invoke the relativistic dispersion relation E2
X − ~p2

X = m2
X (which holds for interme-

diate states in time-ordered diagrams but not in Feynman diagrams, see below). In process (a)
we have ~pX = ~pa−~pc, while in (b) we have ~pb = −~pX+~pd, and thus again ~pX = ~pd−~pb = ~pa−~pc.
Hence in both processes E2

X = ~p2
X +m2

X = (~pa − ~pc)2 +m2
X , and plugging this in yields

Mfi =
gagb

(Ea − Ec)2 − (~pa − ~pc)2 −m2
X

=
gagb

(pa − pc)2 −m2
X

(4.6)

which makes it plausible that Mfi is Lorentz invariant (provided ga,b are Lorentz invariant
numbers, which they are). Using overall four-momentum conservation, pa− pc = pX = pd− pb,
where q ≡ pX denotes the four-momentum of the intermediate/virtual particle X, we find

Mfi = gb
1

q2 −m2
X

ga (4.7)

so the invariant amplitude is the product of two vertex factors, ga,b, times a propagator.
The propagator is the amplitude for X to propagate from the (“lower”) vertex associated

with the incoming particle a (and vertex factor ga) to the (“upper”) vertex associated with
the incoming particle b (and vertex factor gb). Note that it generates a singularity in Mfi if
(and only if) the virtual particle X is on-shell, that is if q2 = m2

X . Within the present line
of argument (where X is supposed to be on-shell) this seems questionable. In the context of
Feynman diagrams the on-shell condition for internal states will disappear, while the structure
(4.7) persists. It is the scalar propagator in QFT, valid for any particle without spin (e.g. a
pion or a physical Higgs). Let us try to summarize the most important points:

• in time-ordered diagrams time increases from the left to the right, the vertical axis is “space”
• at vertices three-momentum is conserved, but energy is not (though it is overall conserved)
• all particles, including internal ones, satisfy the “on-shell” dispersion relation E2

X − ~p2
X = m2

X

4.2 From time-ordered diagrams to Feynman diagrams

In the previous subsection we followed the basic QM principle which says that amplitudes which
correspond to indistinguishable processes must be summed over. In consequence we summed
over the time-orderings (a) and (b), and as a by-product we realized that Mfi ≡ M

(a)
fi + M

(b)
fi

is a Lorentz-invariant quantity.
Consider Fig. 5.5 in the book. The right panel corresponds to the sum of the two time-

ordered diagrams of Fig. 5.3; the vertices are drawn vertically displaced, i.e. at the same time.
This is a Feynman diagram, and the vertical axis represents “topology” rather than “space”.
In the following we shall adopt a new meaning of the arrow; it will indicate the flow of the
quantum number associated with the field ψ = e, µ, τ . And the four-momenta pa, pb, pc, pd are
always meant to flow to the right; they have nothing to do with the arrows. In the right panel
a = c might be an electron, and b = d might be a positron (following the rules of our new
convention we would then reverse the direction of the lower arrows). Since a, c are external
particles (sometimes called “external legs” of the Feynman diagram), they must be on-shell,
i.e. p2

a = p2
c = m2

e. At the upper vertex four-momentum is conserved, i.e. pa = pc + qX (here a
convention for the flow of qX must be chosen, and we let it flow from top to bottom). However,
X is off-shell, so (pa − pc)

2 6= m2
X . Similarly, the positron states b, d are on-shell, and four-

momentum is conserved at the lower vertex, too. As a result, we have p2
b = p2

d = m2
e, and
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pb + qX = pd. Again (pb − pd)2 6= m2
X indicates that the intermediate state X is off-shell (in

fact this quantity is negative in a t-channel diagram). Summary for the right panel:

q2
X = (pa − pc)2 = (pb − pd)2 , q2

X < 0 [“space-like′′] , t− channel (4.8)

The left panel is a Feynman diagram, too, but here the intermediate state may be a different
one. Again, the arrows indicate the flow of the quantum number, and four-momenta are always
meant to flow to the right. Momentum conservation at the left vertex implies pa + pb = qX ,
along with p2

a = p2
b = m2

e and q2
X 6= m2

X . Momentum conservation at the right vertex implies
qX = pc + pd, along with p2

c = p2
d = m2

e and q2
X 6= m2

X . Summary for the left panel:

q2
X = (pa + pb)

2 = (pc + pd)
2 , q2

X > 0 [“time-like′′] , s− channel (4.9)

Since the external states a, b, c, d, once specified, apply to either panel, the two Feynman
amplitudes (that correspond to the two diagrams) must be summed. In the case where a, b, c, d
all happen to be an e−, both are non-zero. In fact, in this case, there are actually four diagrams,
since besides the intermediate state X = γ, also the intermediate state Y = Z0 contributes (to
either diagram). Suppose we consider e−µ− scattering, i.e. a = c = e− and b = d = µ−. In this
case no intermediate state contributes to the left diagram (“s-channel”), while still X = γ and
Y = Z0 contributes to the right diagram (“t-channel”). Things become more complicated, if
we consider e−νe scattering or e−ν̄e scattering or e−νµ scattering or e−ν̄µ scattering. In each
case one needs to figure whether no, one, or more states contribute to the left and/or the right
diagram. In case c = d and a t-channel diagram contributes, one must not forget the crossed
u-channel diagram. Let us try to summarize the most important points:

• in Feynman diagrams time increases from the left to the right, the vertical axis is “topology”
• at vertices every component of four-momentum is conserved (locally, hence globally too)
• external particles satisfy the “on-shell” dispersion relation E2

j − ~p2
j = m2

j for j ∈ {a, b, c, d}
• internal states may be “off-shell”, i.e. E2

X−~p2
X 6= m2

X ; diagram becomes resonant if “on-shell”

4.3 Vertices and propagators in QED

Let us consider e−τ− scattering, see Fig. 5.6 in the book. In this case only the t-channel diagram
is present, and we omit the contribution from the Z0, so only the γ is exchanged. This is a
very good approximation to the SM for 0 < −q2 � m2

Z , with q ≡ p1 − p3, known as QED.
Given the discussion above, we expect the invariant amplitude to take the form

Mfi = 〈ψc|V |ψa〉
1

q2 − 0
〈ψd|V |ψb〉 (4.10)

where m2
γ = 0 is already plugged in. We expect 〈ψc|V |ψa〉 to be constructed from the u

spinors discussed in Sec. 3 (no antiparticle is visible, hence no v-spinor is needed). An extra
complication is that the photon has two polarization states; hence we expect a sum over two
terms of the form (4.10). Specifically, for Aµ(x) = ε

(λ)
µ ei[~q~x−ωt] we expect the polarization states

λ ∈ {1, 2}. The polarization vectors ε
(λ)
• must be space-like and orthogonal to the propagation

direction of the photon; say ε(1) = (0, 1, 0, 0)t and ε(2) = (0, 0, 1, 0)t for ~q ‖ (0, 0, 1)t.
Left-multiplying the “minimally substituted” Dirac equation (3.40) with γ0 yields

i
∂ψ

∂t
+ iγ0~γ ~∇ψ − qγ0γµAµψ −mγ0ψ = 0 (4.11)
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where ~γ ~∇ = γ1∂x + γ2∂y + γ3∂z. Comparing this with i∂ψ
∂t

= HQEDψ suggests the break-up

HQED = −iγ0~γ ~∇+mγ0︸ ︷︷ ︸
HQED,free

+ qγ0γµAµ︸ ︷︷ ︸
HQED,int

(4.12)

where q is the charge of the field (in the present context q = −e for the electron-field and the
tau-field). This break-up of the QED Hamiltonian follows the logic of perturbation theory. The
free QED Hamiltonian governs the properties of the external (electron and tau) legs, and the
interaction QED Hamiltonian yields the properties of the vertices. Putting all these educated
guesses together, we expect for the upper/lower fermion line in the Feynman diagram

〈ψc|V |ψa〉 −→ 〈ψ(p3)|HQED,int|ψ(p1)〉 = u†(p3)(−e)γ0γµε(λ)
µ u(p1)

∣∣∣
m→me

〈ψd|V |ψb〉 −→ 〈ψ(p4)|HQED,int|ψ(p2)〉 = u†(p4)(−e)γ0γνε(λ)∗
ν u(p2)

∣∣∣
m→mτ

(4.13)

where we already plugged in q = −e for either line, and we chose different contraction indices
(µ versus ν) in the two vertices. Often an extra index indicates whether the spinor u is meant
for the e− field or the τ− field. Since only the mass of the lepton matters, we prefer the notation
above. Experimentalists decide which linear combination of u1,2 our u actually stands for.

Knowing these ingredients and the photon-propagator, we expect the invariant amplitude

Mfi =
∑
λ=1,2

[
u†(p3)(−e)γ0γµu(p1)

]
m→me

ε
(λ)
µ ε

(λ)∗
ν

q2

[
u†(p4)(−e)γ0γνu(p2)

]
m→mτ

(4.14)

where q is the four-momentum of the virtual photon (in general q2 6= 0). Based on the property∑
λ=1,2 ε

(λ)
µ ε

(λ)∗
ν = −ηµν , shown in App. D of the book, and our notation ū = u†γ0 we have

Mfi = −
[
ū(p3)eγµu(p1)

]
m→me

ηµν
q2

[
ū(p4)eγνu(p2)

]
m→mτ

. (4.15)

4.4 Feynman rules of QED

Feynman rules are a recipe for generating −iMfi as a product:

i-fermion −→−−• u(p)

f -fermion •−→−− ū(p)

i-antifermion −−←−• v̄(p)

f -antifermion •−−←− v(p)

i-photon wigglyline• εµ(p)

f -photon •wigglyline ε∗ν(p)

boson-propagator •wigglyline• −iηρσ
q2

fermion-propagator •−−−→−−−• i
q/−m

vertex −−•−−
wiggl −iqγκ

Obviously, several comments are in order. First, note that there are external momenta (here
denoted by p and internal momenta (here denoted by q). In tree-level diagrams the q follow from

26



the p by four-momentum conservation, in loop-digrams one ore more momentum integrations
are necessary (see later). Second, the q in the vertex stands for the charge of the continuous
fermion line, e.g. −e for a τ -line, 2

3
e for a U-quark (u, c, t) line, −1

3
e for a D-quark (d, s, b) line.

Third, the “slash-notation” in the fermion-propagator is to be understood as

i

q/−m
=

i

γµqµ −m
=

i

γµqµ −m
· γ

νqν +m

γνqν +m
=

i(γνqν +m)

q2 −m2
=

i(q/+m)

q2 −m2
(4.16)

since γµqµγ
νqν = γµγνqµqν = 1

2
{γµ, γν}qµqν = ηµνqµqν = q2. The slash-notation is convenient,

as it avoids a potential source of confusion between a fermion propagator/leg (which has a
saturated index) and the superficial Greek vertex index (which matches one of the photon-
propagator indices). Finally, note that each fermion line, when read against the flavor arrow
results in an object which transforms like a four-vector. This object is jρ = ū(pout)γ

ρu(pin)
if the superficial index was ρ and the line was a fermion, and it is jσ = v̄(pin)γσv(pout) if the
chosen index was σ and the line was an anti-fermion. The ordering of the in/out momenta is
important; it reflects the rule “against the flavor arrow”. Let us consider a few examples.

(1) Scattering of e− and τ+. Here only the t-channel contributes. Let the incoming e− have
momentum p1, the outgoing p3. For the τ+ the incoming momentum is p2, the outgoing p4.
With the superficial indices ρ at the upper (eeγ) and σ at the lower (ττγ) vertex, we end up,
for −iM , with [ū(p3)(ieγρ)u(p1)]m→me(−iηρσ/q

2)[v̄(p2)(ieγσ)v(p4)]m→mτ .
(2) Scattering of e− and e+. With the e+ inheriting the momentum assignments of the τ+,

the t-channel amplitude is [ū(p3)(ieγρ)u(p1)]m→me(−iηρσ/q
2)[v̄(p2)(ieγσ)v(p4)]m→me . However,

in this case there is a s-channel contribution, too. Labeling the left/right vertex with µ and ν,
respectively, we have [v̄(p2)(ieγµ)u(p1)]m→me(−iηµν/q

2)[ū(p3)(ieγµ)v(p4)]m→me .
(3) Scattering of e− and τ+ with an extra µ+µ− pair in the final state. This is almost the

same situation as under (1), except that the middle part of the photon line is replaced by a
muon line which bends at the two extra vertices (which we may label α, β, respectively) to form
the two extra particles in the final state. Hence the photon propagator (−iηρσ/q

2) is replaced
by (−iηρα/q

2) i
q/−mµ (−iηβσ/q

2). And there are the extra spinors ū(p5) and v(p6) if the extra µ±

have momenta p5, p6, respectively. They are to be sandwiched around the fermion propagator,
whereupon the whole amplitude is seen to be a complex number.

4.5 Summary

In a Feynman diagram time increases from the left to the right, the vertical axis is “topol-
ogy”. Furthermore, complete four-momentum is conserved at each vertex (and thus globally).
External particles are “on-shell”, while internal particles are (in general) “off-shell”.

In the vertex factor −iqγν the q represents the charge of the fermion field that goes through
the vertex, regardless whether the legs are incoming, outgoing, or mixed.

Each vertex is given a “superficial” Greek index, say α, and this index appears both in
the gamma-matrix of the vertex, say −iqγα, and as one index of the photon propagator that
attaches to this vertex, say (−iηα otherindex/q

2).
Each Feynman diagram is already the sum over all possible time-orderings, all helicities

of internal fermions and all polarization states of internal photons. It is specific, however, for
the spin/polarization states of the incoming/outgoing states. Depending on the experimental
situation, the latter must be averaged/summed over (see later).
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5 Helicity and chirality in QED

5.1 Perturbation theory and loop expansion

If all internal momenta of a diagram are specified by the momenta of the external legs (be
they fermion legs u, u†, v, v† or photon legs ε, ε∗), the diagram is called a “tree-level” diagram.
However, there are diagrams where some internal momenta are not fully constrained, because
there is some internal loop where an arbitrary four-momentum q may flow. The number of
such loops establishes a hierarchy which is matched by the power of the fine-structure constant
αem in the amplitude. This is an important theorem in QFT.

For us this is beyond reach, and this is why we proceed “by example”. Take a look at
Fig. 6.1 in the book. This is the leading-order (LO) diagram for the process e+e− → µ+µ− in
QED. The e− momentum is p1, the e+ momentum is p2; accordingly the photon momentum
is p ≡ p1 + p2. Alternatively, we could have stated that p ≡ p3 + p4, where p3, p4 are the
momenta of the µ−, µ+. Now take a look at Fig. 6.2 in the book. These are one-loop diagrams
(“photon self-energy”, “vertex correction”, “box diagram”) which bring small corrections to
the LO diagram of Fig. 6.1. They contribute at the next-to-leading (NLO) level to the same
physical process. In each case there is an unknown amount of momentum in the internal loop,
and there are two additional vertices, bringing an extra factor αem in the amplitude. If you
look carefully you may realize that there is no self-energy correction (via an attached photon)
to the electron. The reason is that all self-energy corrections to external legs will be taken care
of by the process of “renormalization” (here me → mren

e ≡ mphys
e ).

Consider the fermion loop in the photon propagator in Fig. 6.2.a. Following the Feynman
rules of Sec. 4 we attach superficial indices to the two vertices, say α, β. The incoming momen-
tum would be p ≡ pa+pb (flowing to the right). The outgoing momentum would be p ≡ pc+pd
(flowing to the right). The momentum in the upper half of the fermion loop might be p + q
(flowing to the right); in this case the momentum in the lower half is −q (flowing to the right).
There is no constraint on q, since four-momentum is conserved with any value of q. According
to the rules of QM we must somehow sum (i.e. integrate) over all possible values of q. Hence
with the fermion propagators i/(p/+ q/−me) upstairs and i/(−q/−me) downstairs we expect

1

(2π)4

∫
d4q Tr

( i

p/+ q/−me

γα
i

−q/−me

γβ
)

(5.1)

where the trace is needed to convert the four 4 × 4 matrices into something scalar. The
index α is contracted with the photon propagator −iηµα

p2
[alternatively with εα(p) if it were

an external/incoming photon]. The index β is contracted with the photon propagator −i
ηβν
p2

[alternatively with ε∗β(p) if it were an external/outgoing photon].
The structure of the LO amplitude in Fig. 6.1 of the book is αemMLO, if αem is pulled out.

The first power of the fine-structure constant αem = e2/(4π) ' 1/137.04 reflects the presence
of two vertices in this Feynman diagram. Similarly, the structure of the NLO amplitude is
α2

em(M
(1)
NLO + M

(2)
NLO + M

(3)
NLO), with the three contributions reflecting the three diagrams in

Fig. 6.2 of the book. The rules of QM imply that the transition rate is proportional to

|Mfi|2 =
(
αemMLO + α2

em

∑
j=1,3

M
(j)
NLO + ...

)(
αemMLO + α2

em

∑
k=1,3

M
(k)
NLO + ...

)∗
(5.2)

= α2
em|MLO|2 + α3

em

∑
`

{MLOM
(`)∗
NLO +M∗

LOM
(`)
NLO}+ α4

em

∑
j,k

M
(j)
NLOM

(k)∗
NLO + ...
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which demonstrates the interference between tree-level and loop diagrams in physical processes.
Relative to the LO contribution, a one-loop contribution is suppressed by at least a factor αem,
and this is why it is ignored in this course. From a conceptual viewpoint, however, such
higher-order diagrams are relevant in the process of renormalization.

5.2 Process e+e− → µ+µ− as showcase

The process e+e− → µ+µ− is an excellent showcase for the added scientific value of the theory
“QED”. In addition, it is well accessible in experiment, since e+e− beams can be accelerated
(SLAC, LEP), and µ+µ− are easily distinguished from other particles in a good detector.

The LO diagram is shown in Fig. 6.1 of the book. The Feynman rules say

Mfi = i ·
[
v̄(p2)ieγρu(p1)

]
m→me

·
(
− i

ηρσ
(p1 + p2)2

)
·
[
ū(p3)ieγσv(p4)

]
m→mµ

(5.3)

if superficial indices ρ, σ are attached to the two vertices. With jρ ≡ [v̄(p2)ieγρu(p1)]m→me the
electron current and kσ ≡ [ū(p3)ieγσv(p4)]m→mµ the muon current it can be written as

Mfi = −e
2

s
ηρσj

ρkσ (5.4)

where s = q2 = (p1 + p2)2 = (p3 + p4)2 is the usual Mandelstam variable. This is the amplitude
for the spin/helicity configuration (in experiment) that corresponds to our choice of u, ū, v, v̄.

In experiment we have four helicity configurations of the incoming e+e− pair; they are shown
in Fig. 6.5 of the book. The notation in the figure (R for right-handed=forward helicity, L for
left-handed=backward helicity) bears conflict with the concept of right-handed chirality versus
left-handed chirality that will be introduced later. It seems better to stay with the ↑↓ notation
that was used in Sec. 3 of this reading help (and in Chap. 4 of the book). Similarly, there are
four helicity configurations of the outgoing µ+µ− pair.

For a polarized beam and a polarized target, we just select the appropriate u↑ or u↓ or v↑
or v↓ in (5.3). If the beam is polarized and the target is not, we have a fully specified jρ, but
four kσ would contribute. In such a case QM tells us that we need to sum over the respective
probabilities/rates. Hence with the “beam polarization” bp being any of ↑↑, ↑↓, ↓↑, ↓↓, we have

|Mbp|2 = |Mbp,↑↑|2 + |Mbp,↑↓|2 + |Mbp,↓↑|2 + |Mbp,↓↓|2 . (5.5)

Conversely, if the target is polarized but the beam is not, we have a fully specified kσ, but four
jρ that contribute. In such a case QM tells us that we need to average over the respective
probabilities/rates. Hence with the “target polarization” tp being any of ↑↑, ↑↓, ↓↑, ↓↓, we have

|Mtp|2 =
1

4

{
|M↑↑,tp|2 + |M↑↓,tp|2 + |M↓↑,tp|2 + |M↓↓,tp|2

}
. (5.6)

If both the beam and the target are unpolarized, we end up with |M |2 = 1
4
{...}, where the

braces comprise 16 terms (some of which may eventually turn out to be zero).
Let us consider ultra-relativistic kinematics. The helicity eigenstates (3.49) then become

u↑ =
√
E


c
seiϕ

c
seiϕ

 , u↓ =
√
E


−s
ceiϕ

s
−ceiϕ

 , v↑ =
√
E


s
−ceiϕ

−s
ceiϕ

 , v↓ =
√
E


c
seiϕ

c
seiϕ

 (5.7)
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with c = cos(ϑ/2), s = sin(ϑ/2) in the DP-representation. For
√
s� mµ [� me]

p1 '


E
0
0
E

 , p2 '


E
0
0
−E

 , p3 '


E

E sinϑ
0

E cosϑ

 , p4 '


E

−E sinϑ
0

−E cosϑ

 (5.8)

in very good approximation in the COM frame. In other words, the e− moves parallel to ~ez,
and the e+ antiparallel, as encoded in p1,2, respectively. And the µ−, µ+ get deflected by an
angle ϑ (in the xz-plane) relative to the direction of flight to the like-charged predecessor, as
encoded in p3,4. All of this is depicted in Fig. 6.4 of the book. With these kinematics (and still
in the DP-representation) the i-spinors and the f -spinors take the form

u↑(p1) =
√
E


1
0
1
0

 , u↓(p1) =
√
E


0
1
0
−1

 , v↑(p2) =
√
E


1
0
−1
0

 , v↓(p2) =
√
E


−1
0
−1
0

 (5.9)

u↑(p3) =
√
E


c
s
c
s

 , u↓(p3) =
√
E


−s
c
s
−c

 , v↑(p4) =
√
E


c
s
−c
−s

 , v↓(p4) =
√
E


s
−c
s
−c

 (5.10)

respectively, where ↑↓ refers to helicities and c = cos(ϑ/2), s = sin(ϑ/2).
Based on this, we construct the muon current kσ for each one of the helicity combinations

kσ↑↑ = ū↑(p3)γσv↑(p4) = {0, 0, 0, 0}
kσ↑↓ = ū↑(p3)γσv↓(p4) = 2E{0,− cosϑ,+i, sinϑ}
kσ↓↑ = ū↓(p3)γσv↑(p4) = 2E{0,− cosϑ,−i, sinϑ}
kσ↓↓ = ū↓(p3)γσv↓(p4) = {0, 0, 0, 0} (5.11)

where p3, p4 denote the µ−, µ+ momentum, respectively. The four options in the curly bracket
refer to the four options for σ (for each σ we have kσ ∈ C). Based on similar computations, we
could obtain the electron current jρ for given initial momenta p1, p2. However, the identity

[ū(p3)γκv(p4)]† = [u†γ0γκv]† = v†(γκ)†(γ0)†u

= v†(γ0γκγ0)(γ0)u = v†γ0γκu = v̄(p4)γκu(p3) (5.12)

provides exactly what is needed in order to convert the ūγv-type current k into the v̄γu-type
current j. With this trick we can directly write down the result for the electron current

jρ↑↑ = v̄↑(p2)γρu↑(p1) = {0, 0, 0, 0}
jρ↑↓ = v̄↓(p2)γρu↑(p1) = 2E{0,−1,−i, 0}
jρ↓↑ = v̄↑(p2)γρu↓(p1) = 2E{0,−1,+i, 0}
jρ↓↓ = v̄↓(p2)γρu↓(p1) = {0, 0, 0, 0} (5.13)

30



where again the four slots in the curly bracket represent the four options for ρ. Note that on the
right-hand-side (RHS) the first helicity arrow is for the e+, while on the left-hand-side (LHS)
the first helicity arrow is for the e−.

Now we have all ingredients needed to combine the currents (5.11, 5.13) with formula (5.4).
In total the two currents allow for 16 helicity combinations, but from the content of the curly
brackets it is clear that only 4 of them are non-zero. Hence, the non-zero matrix elements are

M↑↓→↑↓ = −e
2

s
2E{0,−1,−i, 0} · 2E{0,− cosϑ,+i, sinϑ}

M↑↓→↓↑ = −e
2

s
2E{0,−1,−i, 0} · 2E{0,− cosϑ,−i, sinϑ}

M↓↑→↑↓ = −e
2

s
2E{0,−1,+i, 0} · 2E{0,− cosϑ,+i, sinϑ}

M↓↑→↓↑ = −e
2

s
2E{0,−1,+i, 0} · 2E{0,− cosϑ,−i, sinϑ} (5.14)

where the dot-product is to be evaluated as a relativistic (indefinite) “scalar product” [because
it comes from the ηρσj

ρkσ contraction of the two fermion currents, see (5.4)]. With 4E2 = s in
the ultra-relativistic limit, it follows that

M↑↓→↑↓ = −e
2

s
s(0− cosϑ− 1− 0) = e2(1 + cosϑ) = 4παem(1 + cosϑ) (5.15)

and the same result is obtained for M↓↑→↓↑. For the two middle amplitudes almost the same
result is found, except for 1→ −1. In summary, the 4 non-zero probabilities are

|M↑↓→↑↓|2 = |M↓↑→↓↑|2 = (4παem)2(1 + cosϑ)2

|M↑↓→↓↑|2 = |M↓↑→↑↓|2 = (4παem)2(1− cosϑ)2 (5.16)

if we have polarized beams and the ability to detect the helicities of the resulting µ+ and µ−.
The remaining 12 fully polarized combinations (where there is either in the i-state or the f -

state a like-orientation combination of helicity arrows) are zero. This is an example of a selection
rule (as familiar from GETA or equivalent), here for helicities. You recall that such rules reflect
the presence of good quantum numbers and hence the presence of symmetries. Hence, a natural
question is which symmetry manifests itself in this result. A graphical illustration of this helicity
selection rule is given in Fig. 6.6 of the book (where R,L should be read as ↑, ↓).

Suppose we have an unpolarized beam and a detector which is insensitive to the helicity
combination of the µ± pair in the final state. Averaging over the beam helicities and summing
over the outgoing polarizations means that we end up with |Mfi|2 = 1

4
{...}, where the braces

comprise (in principle) 16 terms, see (5.6) and (5.5). In our case only 4 terms are non-zero, but
the prefactor remains 1

4
, so the final result for unpolarized beam and unpolarized target is

〈|Mfi|2〉 =
1

4

{
|M↑↓→↑↓|2 + |M↑↓→↓↑|2 + |M↓↑→↑↓|2 + |M↓↑→↓↑|2

}
=

e4

4

{
2(1 + cosϑ)2 + 2(1− cosϑ)2

}
= e4

{
1 + cos2 ϑ

}
. (5.17)
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5.3 Indirect conclusion potential

At the very end of Chap. 3 of the book (which we skipped) it is explained that 〈|Mfi|2〉 must

be combined with a factor 1
64π2s

p∗f
p∗i

, where p∗i,f denotes the magnitude of the (three-)momenta

in the center-of-mas (COM) frame. This gives the differential cross section

dσ

dΩ
=

1

64π2

e4

s
(1 + cos2 ϑ) (5.18)

for unpolarized e+e− → µ+µ−. It makes sense that only the Mandelstam variable s shows up,
since we started from the observation that in this process only the s-channel Feynman diagram
contributes. In short, QED predicts that in this process there is a forward-backward symmetry
about cosϑ = 0, i.e. a symmetry under ϑ↔ π − ϑ.

This expectation is depicted in the left panel of Fig. 6.7 in the book. The ascending dotted
line shows the effect of 2(1+cosϑ)2, the descending dotted line shows the effect of 2(1−cosϑ)2.
Our result (5.18) is shown as a full line – symmetric about ϑ = π/2 as expected.

The experimental result is shown in the right panel of Fig. 6.7 in the book. It differs from
our expectation; it looks like our QED result is superimposed with an unknown asymmetric
contribution. The fundamental symmetry which enforces the symmetry of our QED result
about ϑ = π/2 is the discrete operation of parity. Hence we conclude indirectly that this so-far
unknown force breaks parity. From a modern perspective all of this makes sense. The missing
part is exchanges mediated by weak interactions (besides the photon in Fig. 6.1 of the book
there is a Z-boson line which contributes in the SM). These two amplitudes must be added
(before taking any absolute squares), and this will eventually result in the dotted line in the
right panel of Fig. 6.7 of the book. Of course, there is no logical path that leads from the
experimental result in a unique way to this theory. One must rather guess this theory (here
the theory of weak interactions) correctly, e.g. with the assumption that it breaks parity in the
maximal possible way, and test whether this candidate theory passes all experimental tests.

All of this is reminiscent of the current situation in particle physics. We have a prediction (in
current research by the SM rather than by QED) which obeys some symmetries. If experiment
is found to deviate from this expectation, we know there are some extra – so far unaccounted
for – degrees of freedom at work. Historically, it was a long way from the observation of
forward-backward asymmetry in unpolarized e+e− → µ+µ− differential cross section data to
the modern theory of weak interactions. In current research, experiment is trying to nail down
deviations from the SM in a few places (e.g. in B-physics). Once this is established (we are not
there yet), it will likely take a long time until the underlying “new physics” is guessed correctly
(and verified by checking its predictions in many other places).

Last but not least it is instructive to see what happens if we proceed from the differential
cross-section (5.18) to the total cross section. We need to integrate over ϑ and ϕ, with dΩ =
dϕ sinϑ dϑ = dϕ d(cosϑ). With this substitution the solid-angle integral is∫

(1 + cos2 ϑ)dΩ =

∫ 2π

0

dϕ

∫ +1

−1

(1 + cos2 ϑ)d(cosϑ) = 2π
〈
x+

1

3
x3
〉+1

−1
= 2π

8

3
(5.19)

and the tree-level prediction for the total e+e− → µ+µ− cross section takes the form

σ =
4πα2

em

3s
. (5.20)
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In Fig. 6.8 of the book this formula is compared to experimental data – things seem to agree
perfectly. How is this possible ? The point is that in the solid-angle integration we would
integrate over ϑ from −π to π. In Fig. 6.7 of the book the data are once above and once below
the full (QED) line. By doing the integration we become insensitive to this difference (the areas
under the two curves are nearly the same). This shows that it is important to select the right
observables – those which are sensitive to the (suspected) effects of “new physics”.

5.4 Chirality and chiral projectors

Helicity is a concept which is intuitively accessible, but it is not Lorentz invariant. Chirality, by
contrast, is Lorentz covariant, but it has no intuitive (“thumb forward”, “thumb backward”)
interpretation. The two concepts match each other in the ultra-relativistic limit.

Chirality is based on the definition of the 4× 4 matrix

γ5 ≡ iγ0γ1γ2γ3 .
= σ1 ⊗ I =

(
0 I
I 0

)
(5.21)

where the definition is universal, but the form to the right of the dotted equality is specific to
the DP-representation. Given the properties of γ0, γ1, γ2, γ3 one may derive

(γ5)2 = I , (γ5)† = γ5 , {γµ, γ5} = 0 (5.22)

and these properties are universal, i.e. valid in any representation. In the limit E � m (and
only in this limit) the ultra-relativistic helicity eigenstates (5.7) are also eigenstates of γ5

γ5u↑ = u↑ , γ5u↓ = −u↓ , γ5v↑ = −v↑ , γ5v↓ = v↓ . (5.23)

Note that the minus sign is with u↓ and v↑ [please check by acting with (5.21) onto (5.7)]. Away
from the ultra-relativistic limit, one can define spinors which are eigenstates of γ5

γ5uR = uR , γ5uL = −uL , γ5vR = −vR , γ5vL = vL , (5.24)

and the subscripts R,L help us distinguishing such chirality eigenstates [relative to γ5] from
helicity eigenstates [relative to (3.47)] which have ↑↓ subscripts. The general solutions to the
Dirac equation which are also eigenstates of γ5 are proportional to the massless states (5.7), so

uR = N


c
seiϕ

c
seiϕ

 , uL = N


−s
ceiϕ

s
−ceiϕ

 , vR = N


s
−ceiϕ

−s
ceiϕ

 , vL = N


c
seiϕ

c
seiϕ

 (5.25)

with N =
√
E +m and c = cos(ϑ/2), s = sin(ϑ/2) in the DP-representation.

The properties of the matrix γ5 imply that the operators

PR ≡
1

2
(I + γ5) , PL ≡

1

2
(I − γ5) (5.26)

form a complete set of projectors, that is

PRPR = PR , PRPL = 0 , PLPR = 0 , PLPL = PL , PR + PL = I . (5.27)
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Upon acting with PR on (5.25) we find

PRuR = uR , PRuL = 0 , PRvR = 0 , PRvL = vL , (5.28)

so PR projects out the right-handed particle states and the left-handed anti-particle states (both
in the sense of chirality, not helicity). Similarly, upon acting with PL on (5.25) we find

PLuR = 0 , PLuL = uL , PLvR = vR , PLvL = 0 , (5.29)

so PL projects out the left-handed particle states and the right-handed anti-particle states. More
details on the precise relation between helicity eigenstates and chirality eigenstates are provided
in the book (subsection 6.4.2).

5.5 Trace techniques

For theoreticians trace techniques are important, for instance the “completeness relations”∑
i=1,2

ui(p)ūi(p) = p/+mI ,
∑
i=1,2

vi(p)v̄i(p) = p/−mI (5.30)

are frequently used. Here the “slash notation” is employed, i.e. p/ ≡ γµpµ = pµγ
µ.

Next, trace theorems are important. It is easy to prove that the product of any odd number
of γ-matrices (i.e. γ0, γ1, γ2, γ3, but not γ5) has a vanishing trace. For even products one proves

tr(γµγν) = 4ηµν , tr(γµγνγργσ) = 4ηµνηρσ − 4ηµρηνσ + 4ηµσηνρ (5.31)

besides tr(I) = 4, of course. Traces of 6,8,... γ-matrices are more cumbersome to deal with.
Also the trace of γ5 times a product of an odd number of γ-matrices is zero (this follows
from the first statement in this paragraph). The first two examples of the trace of γ5 times
a product of an even number of γ-matrices are simple, tr(γ5) = 0 and tr(γ5γµγν) = 0, but
tr(γ5γµγνγργσ) = 4iεµνρσ is more involved, and after this complexity quickly proliferates.

5.6 Summary

The goal of this section was to apply the technique of Feynman rules to a real-world pro-
cess, e+e− → µ+µ− in QED (with the Mandelstam variable s above threshold for µ+µ− pair
production, of course). In passing we discussed the concepts of helicity versus chirality.
• In some cases we summed over amplitudes, in some cases we summed/averaged over

probabilities. The difference is rooted in QM; make sure you understand it well !
• The deviation of the QED tree-level prediction (5.18) from experimental data does not

disappear by including higher-order loop corrections in QED. It is rooted in QED respecting
parity, while weak interactions in the SM (and thus the data) violate parity.
• The chiral projectors PR, PL, defined by recurrence to γ5, provide a relativistically invari-

ant replacement for helicity; unfortunately there is no hands-on interpretation. They yield a
decomposition u = cRuR + cLuL = 1

2
(1 + γ5)u+ 1

2
(1− γ5)u = PRu+PLu of any particle spinor

or v = dLvL + dRvR = 1
2
(1 + γ5)v + 1

2
(1− γ5)v = PRv + PLv of any anti-particle spinor.

•We were forced to omit the concept of crossing symmetry in the invariant amplitudes Mfi.
Likewise Chap. 7 and Chap. 8 of the book will be skipped, since they are primarily of interest
from an experimental viewpoint.
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6 Global SU(2) and SU(3) symmetries in flavor space

6.1 SU(2) group and algebra

SU(2) is defined as the group of special unitary matrices U with UU † = I2 and det(U) = 1. A
matrix M ∈ C2×2 has 8 (real) parameters, hence SU(2) has 8− 4− 1 = 3 parameters.

Infinitesimal SU(2) transformations: U(ε) = I+iεG+O(ε2) with ε ∈ R. From U(ε)U †(ε) =
(I + iεG)(I − iεG†) = I + iε(G−G†) +O(ε2) it follows that

UU † = I ⇐⇒ G = G† ⇐⇒ U †U = I (6.1)

and the chain [H,U ] = 0 → [H, 1 + iεG] = 0 → [H,G] = 0 (with the Hamiltonian H) implies

d

dt
〈G〉 = i(~)〈[H,G]〉 = 0 (6.2)

so G is a conserved quantity or the pertinent value g a “good quantum number”.
Finite transformations are obtained from an infinite number of infinitesimal transformations

U(α) ≡ lim
n→∞

(
1 +

i

n
α ·G

)n
=
∞∑
k=1

ik

k!
(α ·G)k ≡ exp(iα ·G) (6.3)

where we introduce the matrix exponential exp : Cn×n −→ Cn×n. Parameterization of U(2) is

U = exp(iα0 + iα ·G) = exp(i[α0I + α1G1 + α2G2 + α3G3]) (6.4)

with G0 = I and G1,2,3 hermitean (for unitarity) and traceless (to ensure det = 1, due to
log det = tr log) matrices. The group SU(2) has 3 real parameters (i.e. α0 = 0). The function
(6.3) maps the tangent manifold (called Lie algebra) to the Lie group. The dimension of this
algebra (4 or 3, respectively) matches the number of parameters needed to cover the group.
The basis elements of this tangent space are called generators, i.e. our G are usually denoted
T . The usual choice is T0 ≡ I (if needed) and Ti ≡ σi/2. Last but not least note that

U = exp(i[α0I2 +
α1

2
σ1 +

α2

2
σ2 +

α3

2
σ3]) = eiα0 exp(i[

α1

2
σ1 +

α2

2
σ2 +

α3

2
σ3]) (6.5)

but the last term can not be factored into exp(iα1

2
σ1) exp(iα2

2
σ2) exp(iα3

2
σ3), see the Baker-

Campbell-Hausdorff formula for details.

6.2 Isospin symmetry for quarks

In Sec. 1 we stated mu ' 2 MeV and md ' 5 MeV in the MS scheme at a renormalization scale
µ = 2 GeV. This does not suggest that u↔ d might be a good symmetry. Reality is different,
because these masses have to be seen in the context of typical hadronic masses/scales. The
latter are of order 4πFπ = 4π 92.4 MeV ' 1 GeV or Mp 'Mn ' 1 GeV. Hence the statement is
that with respect to strong interactions the world is almost symmetric between the u-quark and
the d-quark, since the two are nearly massless on a typical hadronic scale (1 GeV). This was
already noted by nuclear physicists looking for a strong potential to describe the interaction
between nucleons, they suggested Vpp(r) = Vpn(r) = Vnn(r).
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To exploit the SU(2) symmetry we put two iso-spin related states into a column vector, i.e.

N =

(
.
.

)
with p =

(
1
0

)
, n =

(
0
1

)
and q =

(
.
.

)
with u =

(
1
0

)
, d =

(
0
1

)
(6.6)

denote a generic nucleon state or a generic light (S = C = B = T = 0) quark state, respectively.
The two states form a doublet under isospin, associated with quantum numbers i ≡ 1

2
, i3 ≡ ±1

2
,

in complete (mathematical) analogy to s ≡ 1
2
, s3 ≡ ±1

2
for a spin-1

2
doublet. Hence we deal

with the operators I, I3 in exactly the same way as we did with S, S3.
Physicswise an immediate (and important) prediction when considering baryon states

|uuu〉, |uud〉, |udd〉, |ddd〉,

is that the two middle states (e.g. “proton” and “neutron”, respectively) are either both bound
or both unbound. So far so good. Following this principle we would also predict the |uuu〉 and
|ddd〉 states to be bound, and this is not the case. Below we will see that the reason is that
the p and n sit in an octet, not a decuplet (when strangeness is included). Furthermore, one
has to keep in mind that isospin is conserved only by strong interactions, it is partly or fully
broken by electromagnetic (respects I3) and weak (respects nothing) interactions.

The isospin algebra for quarks follows from

[T1, T2] = iT3 (cycl) and T 2 ≡ T 2
1 + T 2

2 + T 2
3 (6.7)

since this means that a maximal set of commuting operators is {H,T 2, T3}. Here we denote the
isospin operators T, T3 instead of I, I3, but we will continue to denote the quantum numbers
i, i3, respectively. With this convention the eigenstates are

T 2φ(i, i3) = i(i+ 1)φ(i, i3) , T3φ(i, i3) = i3φ(i, i3) (6.8)

and we introduce “ladder operators” T± ≡ T1 ± iT2 (see Fig. 9.2 in the book) whereupon

T±φ(i, i3) =
√
i(i+ 1)− i3(i3 ± 1)φ(i, i3 ± 1) (6.9)

for i3 ± 1 ∈ {−i, ..., i} and 0 otherwise. Accordingly for the i = 1
2

system

T+u = 0 , T−u = d , T+d = u , T−d = 0 . (6.10)

6.3 Building diquarks and baryons with 2 flavors

Let us proceed to the combination of two quarks. Take a look at Fig. 9.3 in the book. The
question is how the two guys in the middle ud, du would relate to the states φ(0, 0), φ(1, 0).
The trick is to start from one of the extremes, say uu = φ(1, 1) and to proceed with the
lowering operator T−. In other words, we identify uu = φ(1

2
, 1

2
)φ(1

2
, 1

2
) ≡ φ(1, 1) as well as dd =

φ(1
2
,−1

2
)φ(1

2
,−1

2
) ≡ φ(1,−1), and use one of the ladder operators. For instance T−φ(1,+1) =√

2φ(1, 0) and T−{uu} = du + ud yield φ(1, 0) = 1√
2
(ud + du). Alternatively T+φ(1,−1) =√

2φ(1, 0) and T+{dd} = ud+du confirm φ(1, 0) = 1√
2
(ud+du). And we are led to the conclusion

that the guy orthogonal to 1√
2
(ud+ du) is the singlet state, hence φ(0, 0) = 1√

2
(ud− du), where

the overall sign is arbitrary. There are two checks for the singlet state

T+
1√
2

(ud− du) =
1√
2

(
T+{u}d+ uT+{d} − T+{d}u− dT+{u}

)
=

1√
2

(0 + uu− uu− 0) = 0
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T−
1√
2

(ud− du) =
1√
2

(
T−{u}d+ uT−{d} − T−{d}u− dT−{u}

)
=

1√
2

(dd+ 0− 0− dd) = 0

and this result is depicted in Fig. 9.4 of the book. Mathematically we have re-done what you
did in Physics 3&4 and TP3, we have decomposed the product of two fundamental spin-1

2

representations into irreps. This is denoted as 1
2
⊗ 1

2
= 1⊕ 0 or 2⊗ 2 = 3⊕ 1, where the first

notation is in terms of spins, and the second notation is in terms of multiplicities.
We are now ready to combine three quarks, i.e. to reduce out 1

2
⊗ 1

2
⊗ 1

2
or 2 ⊗ 2 ⊗ 2. Of

course we start from the previous result, i.e. we aim to perform (1⊕ 0)⊗ 1
2

= (1⊗ 1
2
)⊕ (0⊗ 1

2
)

in the first notation or (3⊕ 1)⊗ 2 = (3⊗ 2)⊕ (1⊗ 2) in the second notation. The second term
is obviously a (iso)spin-1

2
doublet, but what is 1⊗ 1

2
or 3⊗ 2 ? The in-concise view is given in

Fig. 9.5. There is a linear combination of ddu and 1
2
(ud+du)d that will be in the i = 3

2
quartet,

and one orthogonal state. Likewise, there is a linear combination of uud and 1
2
(ud+ du)u that

will be in the i = 3
2

quartet, and one orthogonal state. Again, the trick is to start at either
i3-extreme, and to use the respective ladder operator. From

√
3φ(

3

2
,−1

2
) = T+φ(

3

2
,−3

2
) = T+{ddd} = T+{d}dd+ dT+{d}d+ ddT+{d} = udd+ dud+ ddu

we conclude that we have a (iso)spin 3
2

quartet/quadruplet

φ(
3

2
,+

3

2
) = uuu

φ(
3

2
,+

1

2
) =

1√
3

(uud+ udu+ duu)

φ(
3

2
,−1

2
) =

1√
3

(ddu+ dud+ udd)

φ(
3

2
,−3

2
) = ddd (6.11)

which is totally symmetric under any exchange of two flavors. An orthogonality request yields

φS(
1

2
,+

1

2
) = +

1√
6

(2uud− udu− duu)

φS(
1

2
,−1

2
) = − 1√

6
(2ddu− dud− udd) (6.12)

that is a mixed symmetric (iso)spin 1
2

doublet. The descendants of the (iso)singlet are

φA(
1

2
,+

1

2
) =

1√
2

(udu− duu)

φA(
1

2
,−1

2
) =

1√
2

(udd− dud) (6.13)

that is a mixed anti-symmetric (iso)spin 1
2

doublet. In total we have 2⊗2⊗2 = 4⊕2⊕2 in the
plet-notation, where 4 is totally symmetric, one 2 is symmetric among the first two entries, and
the other 2 is anti-symmetric among the first two slots (for both doublets there is no definite
pattern under 1↔ 3 or 2↔ 3). In spin-notation we found 1

2
⊗ 1

2
⊗ 1

2
= 3

2
⊕ 1

2
⊕ 1

2
.
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You could/should have discussed all of this in terms of combining three spin-1
2

states in your
quantum mechanics course. The result is a carbon-copy of what you obtained there, i.e.

χ(
3

2
,+

3

2
) = ↑↑↑

χ(
3

2
,+

1

2
) =

1√
3

(↑↑↓ + ↑↓↑ + ↓↑↑)

χ(
3

2
,−1

2
) =

1√
3

(↓↓↑ + ↓↑↓ + ↑↓↓)

χ(
3

2
,−3

2
) = ↓↓↓

χS(
1

2
,+

1

2
) = +

1√
6

(2 ↑↑↓ − ↑↓↑ − ↓↑↑)

χS(
1

2
,−1

2
) = − 1√

6
(2 ↓↓↑ − ↓↑↓ − ↑↓↓)

χA(
1

2
,+

1

2
) =

1√
2

(↑↓↑ − ↓↑↑)

χA(
1

2
,−1

2
) =

1√
2

(↑↓↓ − ↓↑↓) (6.14)

is a list of all spin-states (in the spin notation) that three spin-1
2

particles may form. The
symmetry pattern is again “totally symmetric”, “mixed symmetric” (among 1↔ 2) and “mixed
anti-symmetric” (among 1↔ 2).

With these two ingredients we can construct baryon wave-functions. The point is that

ψ ≡ φflavor · χspin · ξcolor · ηspace (6.15)

must be totally anti-symmetric under any complete exchange of two slots. Here, “complete”
means in flavor space, spin space, color space, and R4. We have discussed the options for φflavor

and χspin. A preview to the next section tells us that ξcolor is totally antisymmetric by itself.
And from GETA (or equivalent) you know that ηspace is typically (−1)`, hence symmetric for
an S-state. Assuming that most baryons are in their groundstate, we reach the conclusion that
the product φflavor · χspin must be totally symmetric. How can we achieve this ?

In terms of symmetry patterns of (6.11, 6.12, 6.13) and (6.14) we have 3 · 3 = 9 options. So
we just select the right ones, and we see that

ψ = φ 3
2
· χ 3

2
and ψ =

1√
2

(
φ 1

2
,Sχ 1

2
,S + φ 1

2
,Aχ 1

2
,A

)
(6.16)

would work. The first option in (6.16) gives the Delta (“∆)” baryons, the second option gives
the nucleon (“N”) baryons, i.e. p and n. Combining any of the lines of (6.11) with the first four
lines of (6.14) one finds the wavefunctions of the four ∆ states ∆−,∆0,∆+,∆++ with any of
sz ∈ {3

2
, 1

2
,−1

2
,−3

2
}. We will discuss them in a world with s-quarks as part of a flavor decuplet.
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The second option in (6.16) gives the nucleon (p or n) with spin-up or spin-down (↑ or ↓), e.g.

|p, ↑〉 =
1√
2

[
φS(

1

2
,
1

2
)χS(

1

2
,
1

2
) + φA(

1

2
,
1

2
)χA(

1

2
,
1

2
)
]

=
1

6
√

2
(2uud− udu− duu)(2 ↑↑↓ − ↑↓↑ − ↓↑↑) +

1

2
√

2
(udu− duu)(↑↓↑ − ↓↑↑)

=
1√
18

[
2u↑ u↑ d↓ −u↑ u↓ d↑ −u↓ u↑ d↑

+2u↑ d↓ u↑ −u↑ d↑ u↓ −u↓ d↑ u↑
+2d↓ u↑ u↑ −d↑ u↑ u↓ −d↑ u↓ u↑

]
(6.17)

and similarly for |p, ↓〉, |n, ↑〉, and |n, ↓〉.

6.4 Isospin symmetry for antiquarks

Here comes a specialty for SU(2) into play. Recall that SU(2) is a mapping of the form

SU(2) :

(
u
d

)
7−→

(
u′

d′

)
=

(
α β
−β∗ α∗

)(
u
d

)
(6.18)

or q 7→ q′ = Uq with |α|2 + |β|2 = 1. Also recall that charge was defined through (3.42) which
involves a complex conjugate, hence we have the behavior

SU(2) :

(
ū
d̄

)
7−→

(
ū′

d̄′

)
=

(
α∗ β∗

−β α

)(
ū
d̄

)
. (6.19)

It would be stupid to define q̄ as
(
ū
d̄

)
, since a specialty of SU(2) is that ū, d̄ can be assembled

into q̄ in such a way that q̄ transforms exactly like q. This is no longer true for other groups,
e.g. SU(3). Mathematicians call it “pseudoreality of SU(2)”. If we adopt the definition

q̄ ≡
(
−d̄
ū

)
= S

(
ū
d̄

)
with S ≡

(
0 −1
1 0

)
−→

(
ū
d̄

)
= S−1q̄ ,

(
ū′

d̄′

)
= S−1q̄′ (6.20)

and equation (6.19) can be rewritten as S−1q̄′ = U∗S−1q̄. Hence q̄′ = SU∗S−1q̄, but a simple
calculation reveals that SU∗S−1 = ... = U . The final result is q̄′ = Uq̄, that is q̄ transforms
exactly like q, if q̄ is defined in the special way indicated in (6.20). As a result of this we find

T+ū = −d̄ , T−ū = 0 , T+d̄ = 0 , T−d̄ = −ū . (6.21)

6.5 Building mesons with 2 flavors

Mesons (qq̄) can be obtained from diquarks (qq) through u→ −d̄, d→ ū in the second position
Alternatively, we can assemble them from an iso-1

2
quark and an iso-1

2
antiquark state. This is

depicted in the book in Fig. 9.8, and the solution is depicted in Fig. 9.9.
Combining the upper part of q (i.e. an u) with the upper part of q̄ (i.e. an −d̄) we have

φ(1,+1) = −ud̄

φ(1, 0 ) =
1√
2

(uū− dd̄)

φ(1,−1) = +dū (6.22)
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as triplet state and (via orthogonality)

φ(0, 0) =
1√
2

(uū+ dd̄) (6.23)

as singlet state. Check that, within the triplet, T± connects φ(1,−1) with φ(1, 0), and a second
application connects φ(1, 0) with φ(1,+1). Again there are two checks for the singlet state:

T+
1√
2

(uū+ dd̄) =
1√
2

(
T+{u}ū+ uT+{ū}+ T+{d}d̄+ dT+{d̄}

)
=

1√
2

(0− ud̄+ ud̄+ 0) = 0

T−
1√
2

(uū+ dd̄) =
1√
2

(
T−{u}ū+ uT−{ū}+ T−{d}d̄+ dT−{d̄}

)
=

1√
2

(dū+ 0 + 0− dū) = 0

Mathematicians would summarize our activity by stating 1
2
⊗ 1̄

2
= 1⊕0 in the spin-notation

or by 2⊗ 2̄ = 3⊕ 1 in the plet-notation.

6.6 SU(3) group and algebra

SU(3) is defined as the group of special unitary matrices U with UU † = I3 and det(U) = 1. A
matrix M ∈ C3×3 has 18 (real) parameters, hence SU(3) has 18− 9− 1 = 8 parameters.

Similar to what was discussed for U(2) and SU(2), we start from a parameterization of
SU(3), and include an extra factor exp(iα0) = exp(iα0I3) for U(3). Here the first exp(.) is the
standard exponential function, the second one is the matrix exponential function.

For the SU(3) part we need 8 generators [for Nf flavors the group is SU(Nf ) which has
Nf

2− 1 generators]. The generators Ti (with i = 1...3 in our case) must be hermitean (to make
U unitary) and traceless (to enforce unit determinant). Hence

U = exp(iα · T ) with Ti = T †i and α · T ≡
8∑
i=1

αiTi (6.24)

is the standard parameterization for SU(3), if the generators Ti are properly defined. We use

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0


λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 = 1√
3

1 0 0
0 1 0
0 0 −2

 Ti ≡
1

2
λi (6.25)

where the underlying construction principle is as follows. The matrices λ1,2,3 are just σ1,2,3

embedded in C3×3. Next, the pattern of σ1,2 is repeated in the 13 plane and in the 23 plane.
We cannot repeat σ3 twice, since it is diagonal and traceless, but the manifold of 3×3 diagonal
and traceless matrices has only 2 dimensions. Accordingly, we can only add one more matrix
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λ8 which is diagonal and traceless and “orthogonal” to λ3. The normalization in play ensures
that every λ2

i has the same trace. Finally, Ti ≡ 1
2
λi is analogous to Ti ≡ 1

2
σi for SU(2).

Physicswise, T3 acts as I3 on three light (approximately massless) quarks,

T3u = T3

1
0
0

 =

+1
2

0
0

 = +
1

2
u, T3d = T3

0
1
0

 =

 0
−1

2

0

 = −1

2
d, T3s = T3

0
0
1

 = 0

and T± ≡ T1 ± iT2 = 1
2
λ1 ± i

2
λ2 raises/lowers i3 as before. The effect of SU(2) on u ↔ s

would be implemented by λ4, λ5 and λ′ ≡ diag(1, 0,−1). The effect of SU(2) on d ↔ s would
be implemented by λ6, λ7 and λ′′ ≡ diag(0, 1,−1). As we learned before, the dimension of the
tangent manifold (the “algebra”) of SU(3) is 8; hence we cannot have 9 generators. This is
why we chose λ8 ≡ 1√

3
(λ′ + λ′′) = 1√

3
diag(1, 1,−2) to treat u↔ d symmetrically.

As usual, we want to determine the maximal commuting set of operators. One finds

T 2 ≡
8∑
i=1

T 2
i =

1

4

8∑
i=1

λ2
i = ... =

4

3
I3 (6.26)

and this means that every Ti commutes with T 2. Unfortunately [λi, λj] 6= 0 for i 6= j, except
for [λ3, λ8] = 0 (the diagonal ones commute). We choose{

T 2, T3 ≡
1

2
λ3, Y ≡

1√
3
λ8 =

1

3
diag(1, 1,−2)

}
(6.27)

as maximal set, where Y is called hypercharge. It assigns u, d, s the values 1
3
, 1

3
,−2

3
, respectively.

In GETA you learned the GellMann-Nishijima rule q = i3 + 1
2
y. With q = 2

3
,−1

3
,−1

3
and

i3 = 1
2
,−1

2
, 0 we get 1

2
Y = 1

6
, 1

6
,−1

3
for u, d, s, respectively, and this matches our assignment.

We are now ready to consider i3y-diagrams, see Fig. 9.10 in the book. The left panel shows
the position of u, d, s (the triplet 3); the right panel shows ū, d̄, s̄ (the antitriplet 3̄). Note the
geometric pattern with 120o = 2π/3 angles at the origin. Later we will “superimpose” such
triplets/antitriples onto each other in order to build baryons and mesons. Throughout, T 2

defines the “plet”, while T3, Y define the position of the state/particle within the plet. In terms
of the number operators Nu, Nd, Ns of quarks, T3 = 1

2
(Nu −Nd) and Y = 1

3
(Nu +Nd − 2Ns).

Now we can define 6 ladder operators, see Fig. 9.12 in the book. Mathematically

T± =
1

2
(λ1 ± λ2), V± =

1

2
(λ4 ± λ5), U± =

1

2
(λ6 ± λ7) (6.28)

and the effect on quarks is T+d = u, T−u = d, V+s = u, V−u = s, U+s = d, U−d = s, with the
other ones annihilating the state (e.g. T±s = 0, V±d = 0, U±u = 0). Of course, we want to apply
these ladder operators on antiquarks, too. While SU(3) is not pseudoreal, the pseudoreality-
trick works for each one of T, V, U , separately. Hence T+ū = −d̄, T−d̄ = −ū and V+ū =
−s̄, V−s̄ = −ū and U+d̄ = −s̄, U−s̄ = −d̄, while the other ones annihilate the state.

6.7 Building mesons with 3 flavors

Building mesons with flavor group SU(3) is similar to what we did for SU(2). We superimpose
an anti-triplet onto a triplet in exactly the same manner as we superimposed an anti-doublet
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onto a doublet. A pictorial representation is found in Fig. 9.11 of the book. It is clear that one
gets an outer hexagon (with 6 states) plus 3 states in the middle. A closer look will reveal that
2 out of these join the 6 outer states to form an octet, and one guy will be orthogonal.

The trick to disentangle the mess in the middle is – once again – to start at any of the
extremes. Now there are 6 such states, and depending on which one we choose, there is one
element of {T±, U±, V±} that would bring us to the center. This is illustrated in Fig. 6.12 of the
book, and in mathematical terms the statement is phrased as

T+|dū〉 = |uū〉 − |dd̄〉 , T−|ud̄〉 = |dd̄〉 − |uū〉
V+|sū〉 = |uū〉 − |ss̄〉 , V−|us̄〉 = |ss̄〉 − |uū〉
U+|sd̄〉 = |dd̄〉 − |ss̄〉 , U−|ds̄〉 = |ss̄〉 − |dd̄〉 . (6.29)

In the left block the three lines are not independent, e.g. |uū〉−|dd̄〉−|uū〉+ |ss̄〉 = −|dd̄〉+ |ss̄〉.
Similarly, in the right block |dd̄〉 − |uū〉 − |ss̄〉 + |uū〉 = −|ss̄〉 + |dd̄〉. Hence, only 2 out
of the 3 states in the middle can be reached from the hexagon, and 1 is orthogonal. The
former states form an octet, the one orthogonal state is a singlet. The two octet members with
i3 = y = 0 are not unique; it could be uū− dd̄ and uū + dd̄− 2ss̄ [there is a U(1) ambiguity].
The singlet state is unique; its flavor wavefunction is φsgl = 1√

3
(uū + dd̄ + ss̄). Please verify

T±φsgl = 0, U±φsgl = 0, V±φsgl = 0. This result is depicted in Fig. 9.13 of the book. Hence, the
overall result is 3⊗ 3̄ = 8⊕ 1 in plet-notation (here there is no convenient spin-notation).

Interestingly, the ambiguity of the octet states with zero isospin and zero strangeness is
relevant in nature. There are two light meson octets, the JP = 0− “pseudoscalar mesons”
(π−,0,+, K0, K+, K−, K̄0, η), and the JP = 1− “vector mesons” (ρ−,0,+, K∗0, K∗+, K∗−, K̄∗0, ω).
These states are depicted in Fig. 9.14 of the book. In the former case the flavor content

π0 =
1√
2

(uū− dd̄) , η ' 1√
6

(uū+ dd̄− 2ss̄) , η′ ' 1√
3

(uū+ dd̄+ ss̄) (6.30)

matches our calculation in very good approximation (there is only a tiny amount of η − η′

mixing). In the latter case things are significantly different

ρ0 =
1√
2

(uū− dd̄) , ω ' 1√
2

(uū+ dd̄) , φ ' ss̄ (6.31)

since there is strong ρ0 − ω mixing, and φ is almost a pure ss̄ state. Recall from GETA that
only states with identical quantum numbers can mix.

Such information on the flavor content is useful to make predictions, e.g. for the meson
masses. Suppose the quarks interact with each other via a spin-spin coupling, that is

U ∝ g

mi

~Si ·
g

mj

~Sj ∝
αst

mimj

~Si · ~Sj (6.32)

would be a contribution to the total energy (g is the strong coupling that replaces e, and
αst replaces αem). For heavy quarks it is reasonable to describe their interaction through a
potential, for light quarks it is not. Ignoring this for a moment, we would expect the meson
mass M to relate to the masses mi,mj of the flavors i, j it is made from via

M(qiq̄j) = f(mi) + f(mj) +
const

mimj

〈~Si · ~Sj〉 (6.33)
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where most physicists would replace the function f(.) by the identity. What is 〈~Si · ~Sj〉 ? The

trick is to write 〈~Si · ~Sj〉 = 1
2
[〈~S2〉 − 〈~S2

i 〉 − 〈~S2
j 〉] where ~S is the total spin of the qq̄ system (i.e.

of the meson). In this form each term is known: 〈~S2
i 〉 = si(si + 1) = 3

4
for each quark qi (and

ditto each antiquark q̄j), while 〈~S2〉 = s(s + 1) is 0 for pseudoscalar mesons and 2 for vector

mesons. Overall, 〈~Si · ~Sj〉 is found to be 1
2
[0− 3

2
] = −3

4
for pseudoscalar mesons and 1

2
[2− 3

2
] = 1

4

for vector mesons. Hence we reach the “predictions” for qiq̄j mesons

MP = mi +mj −
3

4

A

mimj

, MV = mi +mj +
1

4

A

mimj

(6.34)

and – even if we do not trust the first two terms – we have the more robust prediction

MV −MP =
A

mimj

> 0 (6.35)

which relates the hyperfine splitting to the product of the quark masses.
The problem with the first form is that fitting to experimental data suggests so-called

“constituent quark masses” mu,d ∼ 300 MeV, ms ∼ 500 MeV which have nothing to do with
the “current quark masses” listed in Sec. 2. The latter quark masses are fundamental quantities,
while e.g. the u constituent quark mass depends on the meson or baryon the u sits in.

6.8 Building diquarks and baryons with 3 flavors

We are now ready to combine two quarks with SU(3) flavor group rather than SU(2). Super-
imposing the center of the second down-triangle onto the edges of the first down-triangle gives
the structure shown in Fig. 9.15 of the book. In other words, the figure tells us that 3⊗3 = 6⊕ 3̄
in plet-notation (again, there is no spin-notation for qq). The 6 is symmetric under flavor ex-
change, the 3̄ is antisymmetric (note the difference between 3 and 3̄, one is a down-triangle,
one is an up-triangle). The flavor content is determined in the usual fashion. One starts at
the edges of the 6, i.e. the states uu, dd, ss are readily identified. Next, one uses T±, U±, V± to
reach the remaining three positions of the 6. This gives 1√

2
(ud+ du), 1√

2
(ds+ sd), 1√

2
(su+ us),

respectively. The three positions on 3̄ (which are at identical i3y-coordinate positions) are
1√
2
(ud− du), 1√

2
(ds− sd), 1√

2
(su− us), for reasons of orthogonality.

With these results in hand, we can now reduce out baryons in flavor space. In other words,
3 ⊗ 3 ⊗ 3 = (6 ⊕ 3̄) ⊗ 3, and our task is to work out irreducible representations (“irreps”) of
6⊗3 and 3̄⊗3. The three steps of this procedure are illustrated in Fig. 9.16 of the book. Panel
(a) just illustrates the break-up into two sub-tasks. Panel (b) depicts the process of reducing
6 ⊗ 3 = 10 + 8. Here we are called to overlay the center of the 3 onto each node of the 6; the
result is shown in the middle (six points are two-fold degenerate, one three-fold). The flavor
assignments in the nodes of the 10 follow from the edges by using the ladder operators (one
is shown in the Fig.). The flavor assignments in the nodes of the 8 follow from orthogonality
(with an ambiguity in the middle; one node is shown in the Fig.). Panel (c) depicts the process
of reducing 3̄ ⊗ 3 = 8 + 1. Again, we start by overlaying the center of the 3 onto each node
of the 3̄. The result is nine states with a hexagonal boundary and a three-fold occupied center
(not shown in the Fig.). They are disentangled into an octet and a singlet, as stated above.

Note that the two 8 emerging in this reduction are not identical. This follows from a look
at the symmetry properties of these (multi)plets. The 8 that emerged from 6 ⊗ 3 = 10 + 8 is
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mixed symmetric (there is no overall symmetry, but it is symmetric under exchange of the first
two flavors). The 8 that emerged from 3̄⊗3 = 8+1 is mixed anti-symmetric (there is no overall
symmetry, but it is anti-symmetric under exchange of the first two flavors). In formulas

3⊗ 3⊗ 3 = 10︸︷︷︸
tot.symm

⊕ 8︸︷︷︸
mix.symm

⊕ 8︸︷︷︸
mix.anti

⊕ 1︸︷︷︸
tot.anti

(6.36)

and the requirement of total anti-symmetry determines the flavor wavefunction of the 1tot.anti

uniquely as 1√
6
(uds−usd+dsu−dus+sud−sdu). Please check yourself that this combination

vanishes if any of the operators T±, V±, U± is applied.
Finally, recall that all of this concerns the factor φflavor in (6.15). Obviously, if φflavor has a

mixed symmetry pattern under exchange of two quarks, the remaining three factors (together)
must have an appropriately matched (mixed) symmetry pattern to ensure that ψ is totally
anti-symmetric under any (complete) exchange of two quarks. In Sec. 7 we will learn that
ξcolor is totally anti-symmetric by itself. In the ground state (` = 0) the factor ηspace is totally
symmetric by itself. The product φflavor · χspin in the baryon wavefunction is totally symmetric
under exchange of any two quarks. Recall that χspin was χ3/2,tot.symm

.
= χ4,tot.symm, as well as

χ1/2,mix.symm
.
= χ2,mix.symm and χ1/2,mix.anti

.
= χ2,mix.anti. Overall, we find the possibilities

ψ = φ10 · χ4︸ ︷︷ ︸
JP= 3

2

+ baryon decuplet

or ψ =
1√
2

(
φ8,Sχ2,S + φ8,Aχ2,A

)
︸ ︷︷ ︸

JP= 1
2

+ baryon octet

(6.37)

where S stands for “mixed symm”, A stands for “mixed anti”, and the missing subtext in φ10 ·χ4

is supposed to indicate that each factor is totally symmetric. The “baryon decuplet” comprises
the states ∆,Σ∗,Ξ∗,Ω, while the “baryon octet” contains the states N,Σ & Λ,Ξ. These states
are depicted in Fig. 9.17 of the book. Note that “p (uud)” just gives the net flavor content of
the proton; the “(.)” stands for “an undisclosed symmetry pattern” of the argument.

It goes without saying that also for SU(3) as symmetry group knowing the factors φflavor and
χspin in (6.15) allows for simple predictions for masses and magnetic moments of baryons built
from u, d, s quarks. Historically, this was important to convince the particle physics community
of the presence of the factor ξcolor and thus of the concept of color charges.

6.9 Summary

• Flavor symmetry is a symmetry among 2 or 3 approximately massless quarks (mq � 1 GeV).
• The group is SU(2) or SU(3), respectively, and it is global (no space-time dependence).
• The number of parameters is 3 and 8, respectively, in any valid parameterization.
• A convenient parameterization is exp(.), with 3 or 8 hermitean and traceless generators Ti.
• Meson flavor states are built from 2⊗ 2̄ or 3⊗ 3̄; they correspond to bound states in nature.
• Diquark flavor states are built from 2⊗ 2 or 3⊗ 3; they are an intermediate step for baryons.
• Baryon flavor states are built from attaching “⊗3” to each diquark irrep, and reducing them.
• From φflavor and χspin in (6.15) simple predictions for masses and magnetic moments follow.
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7 Strong interactions via local SU(3) gauge group

7.1 Local gauge invariance in QED and QCD

In classical electrodynamics (TP 2) you learned that the theory is invariant under a change

φ(x) −→ φ′(x) ≡ φ(x)− ∂tχ(x) and ~A(x) −→ ~A′(x) ≡ ~A(x) + ~∇χ(x) (7.1)

of the scalar and vector potentials, with x = x• = (t, ~x). Using the four-vector potential

A• = (φ,− ~A) and the four-derivative ∂• = (∂0, ~∇), we may rewrite this as

Aµ(x) −→ A′µ(x) ≡ Aµ(x)− (∂µχ)(x) (7.2)

where no change of the argument is implied (i.e. x′ = x).
In quantum mechanics (TP 3) you learned that the gauge invariance of electrodynamics

manifests itself in a local phase transformation of the wavefunction

ψ(x) −→ ψ′(x) ≡ U(x)ψ(x) with U(x) ≡ exp(iqχ(x)) ∈ U(1) (7.3)

where q is the charge of the particle. The possible complex phases form the one-dimensional
Lie group U(1) with a single generator (the identity in tangent space). This transformation is
local because U = U(x), while the space-time independent U discussed in Sec. 6 were global.

Suppose we have the funny idea of requesting the Dirac equation to be invariant under the
local gauge transformation (7.3). Plugging ψ′(x) = exp(iqχ(x))ψ(x) into iγµ∂µψ

′(x) = mψ′(x)
yields iγµ∂µ{exp(iqχ(x))ψ(x)} = m exp(iqχ(x))ψ(x). Applying the product rule, and left-
multiplying the result with exp(−iqχ(x)) eventually leads to

iγµ
[
∂µ + iq(∂µχ)(x)

]
ψ(x)−mψ(x) = 0 (7.4)

and this equation differs from the Dirac equation for ψ(x) by an extra term −γµq(∂µχ)(x)ψ(x)
on the left-hand side. This undesired term looks deceptively like the last term in (7.2) times
ψ(x). What could we do ? We could stipulate that the original Dirac equation is actually

iγµ
[
∂µ + iqAµ(x)

]
ψ(x)−mψ(x) = 0 (7.5)

and try the combined effect of applying both the gauge transformation (7.3) for the wavefunction
and (7.2) for the vector potential. Plugging these two transformations into (7.5) with the
replacement ψ → ψ′ and Aµ → A′µ, one notices two unwanted terms. Fortunately they have
opposite sign, so they cancel (please verify this statement). We have seen (7.5) before; in (3.40)
it was introduced under the headings of “minimal substitution”. Hence, we learn that local
gauge invariance is the principle behind minimal substitution.

In electrodynamics the question arises whether there is any physical entity associated with
the abelian gauge potential Aµ or whether it is mere mathematical trickery. The electromagnetic
field F µν is found to transport energy and momentum, but attributing a physical reality to Aµ is
hindered by its gauge dependence (we use Feynman gauge). After the electromagnetic potential
is quantized, “photons” are the excitations of Aµ (see QFT course).
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Pauli was the first physicist to consider a generalization of (7.3) to U(x) ∈ SU(2) or U(x) ∈
SU(3) for each x ∈ R4, i.e. to non-Abelian gauge groups. Hence (7.3) is replaced by

ψ(x) −→ ψ′(x) ≡ U(x)ψ(x) with U(x) ≡ exp(igχ(x)) ∈ SU(Nc) (7.6)

where χ(x) is a traceless hermitean Nc ×Nc matrix (the Lie algebra element), defined by

χ(x) = ~χ(x) · ~T =

N2
c−1∑
a=1

χa(x)T a . (7.7)

Throughout, Nc is the number of “color” charges, i.e. Nc = 2 for SU(2), or Nc = 3 for SU(3).
The dot-product in this equation has nothing to do with three-dimensional space; it involves 3
terms for SU(2), and 8 terms for SU(3). The T a are the generators (i.e. hermitean traceless
Nc ×Nc matrices) known from Sec. 6. Specifically, we have T a = σa/2 with the Pauli matrices
σa and a = 1...3 for SU(2), and we have T a = λa/2 with the GellMann matrices λa and
a = 1...8 for SU(3). In (7.6) the formerly-electric “charge” q is replaced by a generic non-
Abelian “coupling” g. In weak interactions it will be specified as g → gwk or gW , in strong
interactions it will be specified as g → gst or gC . The Dirac equation takes the form

iγµ
[
∂µ + igAµ(x)

]
ψ(x)−mψ(x) = 0 with Aµ(x) =

∑
a

Aaµ(x)T a (7.8)

where the local non-Abelian gauge potential Aµ(x) is a (space-time dependent) superposition
of the 3 or 8 generators T a (which are the same everywhere). The transformation law

Aaµ −→ Aa′µ ≡ Aaµ − ∂µχa − gfabcχbAcµ (7.9)

of the gauge potential (with b, c summed over) involves the structure constant fabc of the gauge
group; they are defined via the commutation relation [T a, T b] = ifabcT c.

The interaction term in the Dirac equation (7.8) reveals the quark-quark-gluon vertex as

gγµAµ(x)ψ(x) = gγµAaµ(x)
λa

2
ψ(x) (7.10)

with implicit summation over the “adjoint index” a. In consequence, we find the recipe

−iqγκ −→ −igγκ
λaij
2

(7.11)

for upgrading the QED Feynman rule (fermion-fermion-photon vertex) to the QCD Feynman
rule (quark-quark-gluon vertex). Here, a ∈ {1, ..., N2

c −1} is the “adjoint index” of the gluon,
while i, j ∈ {1, ..., Nc} are the “fundamental indices” of the outgoing/incoming quark. In QCD
the 3× 3 matrix λa is to be evaluated at position ij, with a ∈ {1...8} and i, j ∈ {1...3}.

A peculiarity of non-Abelian groups is that the same gauge coupling g (as defined through
the quark-quark-gluon vertex) also appears in the Feynman rules for 3-gluon and 4-gluon ver-
tices (to which there is no counterpart in QED), see Fig. 10.1 of the book. There are Feynman
rules for these 3-gluon and 4-gluon vertices, too, and there is a Feynman rule for the gluon
propagator. For the photon propagator we had −iηµν/q

2, for the gluon propagator it will be
−iηµνδ

ab/q2. This means it cannot change its adjoint index (a, b ∈ {1...8} in QCD) in flight.
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7.2 Some key concepts of QCD

The bottom line of the previous subsection is that “color” is a new internal degree of freedom,
with 3 new charges. For the lack of a better idea, we call them “red”, “green”, “blue” (r, g, b).
And an anti-quark can have the colors “anti-red”, “anti-green”, “anti-blue” (r̄, ḡ, b̄). So

r
.
=

1
0
0

 , g
.
=

0
1
0

 , b
.
=

0
0
1

 , (7.12)

spans an internal space, and quarks transform in this 3-dimensional “fundamental” representa-
tion of SU(3). This has consequences for the available color structures of a qq̄ combination (or
qkq̄` combination, with flavor indices k, `). You recall that the three flavors of q were presented
as a 3 (down-triangle) in the i3y-plane. In complete analogy, the three colors of a quark can
be presented as a 3 (down-triangle) in an analogous plane (some people call it the iC3 y

C-plane).
And the three anti-colors of an anti-quark can be presented as a 3̄ (up-triangle) in this artificial
plane. See Fig. 10.2 of the book for an illustration.

Fig. 10.7 of the book shows that the way how this color-anticolor structure is reduced out is
an exact match to what we did in Sec. 6 for flavor. The color structure of a qq̄ pair decomposes
into an octet and a singlet. Mathematically, it is again 3⊗ 3̄ = 8⊕ 1, exactly as in the previous
section, with the replacement u→ r, d→ g, s→ b. The eight states in the octet are

rḡ , gr̄ , gb̄ , bḡ , br̄ , rb̄ ,
1√
2

(rr̄ − gḡ) ,
1√
6

(rr̄ + gḡ − 2bb̄) (7.13)

and it is easy to check that the ladder operators T±, U±, V± transform them into each other.
The singlet state must be orthogonal to any state of the octet, and indeed

1√
3

(rr̄ + gḡ + bb̄) ←→ ξcolor(qq̄) (7.14)

is a carbon copy of our previous result (again any of T±, U±, V± annihilates this state). Hence,
if a qq̄ state is color neutral, its color wavefunction must be of this totally symmetric type.

Gluons behave, as far as color is concerned, a bit like a qq̄ pair, though not quite. A
gluon may take any state of (7.13), but not (7.14). In other words, it may carry any color-
different-anticolor combination [first six entries in (7.13)], or it carries a linear combination
of rr̄, gḡ, bb̄ which is orthogonal to (7.14) [last two entries]. This is why there are 8 gluons
(in general N2

c − 1 for Nc colors). Mathematicians and theoretical physicists say that gluons
transform in the “adjoint representation” (which acts on a N2

c −1 dimensional vectorspace). As
a by-product you see why the “intuitive understanding” of the adjoint nature of the gluon (in
the book depicted in Fig. 10.4) is limited. It yields a good illustration for the “color-different-
anticolor” gluons, i.e. the first six entries in (7.13) [in the figure it is br̄ or rb̄]. But it is blind to
the details of a gluon in the middle of the octet. For instance, if the quark at the upper vertex
stays r, and the one at the lower vertex stays b, this picture is not sensitive to the difference
between a 1√

2
(rr̄−gḡ) or 1√

6
(rr̄+gḡ−2bb̄) gluon (which works), and a 1√

3
(rr̄+gḡ+bb̄) “gluon”

(which does not exist). In short, the color-octet (“adjoint”) nature of the gluon is important.
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7.3 Color confinement in QCD at large distances

In QED the fermion-fermion-photon vertex yields a factor −iqγκ, if the electric charge of the

fermion line is q. In QCD we plug in a factor −igγκ
λaij
2

, if the outgoing gluon has color i,
and the incoming one has color j. The adjoint index a is a superficial index, like κ, i.e. you
can attribute it at your discretion, since it will be matched by an identical index of the gluon
propagator and summed over. In any case, no momentum shows up in the electron-electron
photon vertex (QED) and the quark-quark-gluon vertex (QCD).

Nevertheless, if you define the QED or QCD coupling strength by a potential

VQED(r) = − e2

4πr
= −αem

r
or VQCD(r) = − g2

4πr
= −αst

r
[CF missing] (7.15)

the coupling e2 or g2 depends a bit on the distance r. Since it is common to let the (renormal-
ized) coupling depend on a scale µ or µ2 rather than a distance, one might write

VQED(r) = −αem(µ ∼ 1/r)

r
or VQCD(r) = −αst(µ ∼ 1/r)

r
[CF missing] (7.16)

where also the notation with αem(µ2 ∼ 1/r2) or αst(µ
2 ∼ 1/r2) is frequently found. The

“running” of the coupling e2(µ2) or g2(µ2) comes from loop-diagrams like those in Fig. 10.10
and 10.11 of the book. Their evaluation is a key topic in a course on QFT.

What is of relevance in this course, are two qualitative differences between QED and QCD.
In QED this “running” is an extremely mild effect, in QCD it is very pronounced. Moreover,
they work in opposite direction in these two theories. In QED the coupling becomes stronger
at short distances, in QCD it becomes weaker (and vice versa at large distances).

This is illustrated in Figs. 10.12 and 10.14, respectively. The QED “running” is shown in
Fig. 10.12. At large distances, q2 ↓ 0, and αem(q2 ↓ 0) tends to about 1/137.036 ' 0.0073 at
the left-infinite boundary (dotted line). At the highest available energies, q2 ' (1 TeV)2, it
increases to about 0.008 (at the Z mass it is about 1/127 ' 0.0075). The QCD “running” is
shown in Fig. 10.14, and it is far more pronounced (compare the range of the ordinates). At
large distances, αst(q

2 ↓ 0) seems to diverge at the left-infinite boundary [that’s not true, it
plateaus at q2 ' (200 MeV)2 ' (1 fm)−2]. At short distances, in the figure up to q2 ' (1 TeV)2,
the coupling seems to decrease monotonically (that’s true for QCD).

The reason for this difference is the gluon self-interaction which, in turn, is due to it carrying
a color charge degree of freedom (in the adjoint representation) to which it couples. In nature,
only color neutral objects are observed, e.g. three quarks can be in the singlet state

1√
6

(rgb− rbg + gbr − grb+ brg − bgr) ←→ ξcolor(qqq) (7.17)

which, once more, is a carbon-copy of our result from Sec. 6. The interesting news is that
several gluons may jointly form a color-singlet state, e.g. the first six elements of (7.13) can
form such a state. Hence, if dynamics allows for this, gluons may form so-called glue-balls, i.e.
color-neutral bound states that might appear in asymptotic (i.e. “in” or “out”) states.

Equation (7.16) holds for r � 1 fm, i.e. in a regime where αst � 1 [modulo a so-far
undiscussed factor 4/3]. For r > 0.1 fm another term kicks in, and the potential changes to

VQCD(r) ' −CF
αst(µ ∼ 1/r)

r
+ σr with CF ≡

4

3
(7.18)
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as shown in Fig. 10.26 of the book [full line, the first term is the dotted line]. The constant
σ ∼ 1 GeV/ fm is called string-tension. It generates an additional attractive force which is
independent of r, and surprisingly large (about 100’000 N in SI units). This qualitative change
happens just when αst is about to become really strong, i.e. at distances r ∼ 1 fm.

There is yet another effect in full QCD, known as “string-breaking”, see Fig. 10.9 in the
book. If we separate a qq̄ pair, initially their interaction is governed by eqn. (7.16). However,
as r keeps growing, the second term in eqn. (7.18) becomes important, and the “string” (i.e.
the color flux-tube between the qq̄ pair) stores an increasing amount of energy. At r ∼ 1 fm it
eventually becomes energetically more favorable to form an additional qq̄ pair which allows for
breaking the string into two shorter strings. This mechanism is believed to be at the heart of
color confinement, i.e. only color-neutral states can show up as asymptotic states.

7.4 Running couplings and the definitions of αem and αst

The process of renormalization is easiest to explain in QED (and even there it involves concepts
which are beyond the level of this course). Let us take another look at Fig. 10.11. If we define
the coupling strength e or e2 or αem through the the scattering of two electrons, then the result
depends (very mildly) on the Mandelstam variable t = q2. This is what experiment finds,
see (again) Fig. 10.12. On the theory side we can calculate Feynman diagrams, e.g. those in
Fig. 10.10 or 10.11. These involve the “bare” positron charge e0, so far denoted by e. While
e0 is q-independent, the resulting coupling runs, i.e. e = e(q2), as long as the overall form
is e(q2)/q2, which it is. In Fig. 10.11 all the “bubbles” are resummed into a hatched “blob”
which, in turn, amounts to a renormalized coupling. The key idea is that we should not identify
e2

0/(4π) with the measured αem ' 1/137.036, but rather e2(q2 ↓ 0)/(4π) should be identified
with this number. And theory should, of course, work out the relationship e2

0 ←→ e2(q2).
In the book, the idea for this resummation is presented. The tree-level diagram is P0 = e2

0/q
2.

The one-loop diagram is P0π(q2)P0, where π(q2) is the one-loop bubble. The two-loop diagram
is P0π(q2)P0π(q2)P0, and so on. Hence, this specific class of diagrams can be summed

P ≡ P0 + P0π(q2)P0 + P0π(q2)P0π(q2)P0 + ...

= P0 [1 + π(q2)P0 + π(q2)P0π(q2)P0 + ...] = P0
1

1− π(q2)P0

(7.19)

since the rules of the geometric series apply. Our goal was to identify P = e2(q2)/q2, hence

e2(q2) =
e2

0

1− e2
0π(q2)/q2

=
e2

0

1− e2
0Π(q2)

(7.20)

with Π(q2) = π(q2)/q2. This relation can be inverted to read (note the sign in the denominator)

e2
0 =

e2(q2)

1 + e2(q2)π(q2)/q2
=

e2(q2)

1 + e2(q2)Π(q2)
(7.21)

up to terms O(e4). From this we learn that the full right-hand side does not depend on q2, and
a few mathematical operations thus yield [as always up to O(e4) terms] the relation

e2(q2) =
e2(µ2)

1− e2(µ2)[Π(q2)− Π(µ2)]
(7.22)
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which tells us how the fine-structure constant at one q2 differs from its sibling at a reference
momentum squared, µ2. Hence the theory job is to determine the square bracket, and they
find [Π(q2)− Π(µ2)] ' ln(q2/µ2)/(12π2) for QED. Overall, we have

αem(q2) ' αem(µ2)

1− αem(µ2) ln(q2/µ2)/(3π)
(7.23)

where we should stress that this relation holds only at the one-loop level. The important thing is
the minus sign in the denominator (for QED). As we increase q2 the denominator gets smaller,
and the QED coupling constant thus larger, as seen in Fig. 10.12.

Now we repeat this idea for QCD. In the book the leading diagrams are shown in Fig. 10.13.
The self-energy correction of the photon had one contribution; the self-energy correction of the
gluon has three such contributions. The story is the same as before, hence we find (7.22) with
e2(.) → g2(.) replaced, except that [Π(q2) − Π(µ2)] has a different factor ahead of ln(q2/µ2),
not 1/(12π2) any more, but −[11Nc− 2Nf ]/(48π2). Here Nc is the number of colors (Nc = 3 in
the SM), and Nf is the number of fermions which couple to gluons (Nf = 6 in the SM). Hence

αst(q
2) ' αst(µ

2)

1 + [11Nc − 2Nf ]αst(µ2) ln(q2/µ2)/(12π)
(7.24)

with a plus sign in the denominator, in contradistinction to (7.23). This means that αst(q
2)

decreases as a function of q2, see again Fig. 10.14 in the book. In particular

αst(q
2 ≡M2

Z) = 0.1184± 0.0004 = 0.1184(4) (7.25)

has been measured very precisely by various experiments and theory (in lattice QCD). There
is some discussion whether this precision is really warranted, the PDG gives 0.1179(10).

7.5 Asymptotic freedom in QCD at short distances

One may consider generalizations of QCD, with arbitrary Nc, Nf . From (7.24) it follows that
the sign of [11Nc− 2Nf ] is crucial for the behavior of the theory. For Nf < 11Nc/2, or Nf ≤ 16
for Nc = 3, one has asymptotic freedom, which is the sound behavior (in the UV). With more
flavors one is back to the unhealthy high-energy properties of QED (with a Landau pole).

Physicswise, a small coupling at large q2 is convenient. It means that “partons” are quasi-
free particles if studied at high enough energies. In Fig. 10.14 we see αst(q

2 ∼ (300 GeV)2) ' 0.1,
which is small but not incredibly small. It doubles to 0.2 at about q2 ∼ (6 GeV)2, and for even
lower q2 it becomes too large to allow for a perturbative treatment.

7.6 Summary

• The Feynman rule for the qqg vertex in QCD is similar to the ffγ rule in QED, see (7.11).
• The Feynman rule for the ggg vertex in QCD is complicated, since it involves momenta.
• The Feynman rule for the gggg vertex in QCD is complicated, since it involves many fabc.
• The Feynman rule for the gluon propagator in Feynman gauge is −iηµνδ

ab/q2.
• Important qualitative features are asymptotic freedom, running coupling, confinement.
• The NRQCD potential (7.18) explains some heavy-quark physics, but not string breaking.
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8 Weak interactions via local SU(2) gauge group

8.1 Parity conservation for interactions with V structure

Quick summary of QED, QCD, and QFD (quantum flavor dynamics, i.e. weak interactions).

QED: ū(e−, p′)(+ieγµ)u(e−, p) · (−iηµ•/q
2), discr. symmetries C,P, T individ. obeyed

QCD: ū(s, j, p′)(−igstγ
µλaji)u(s, i, p) · (−iηµ•δ

a•/q2), discr. symmetries C,P, T individ. obeyed

QFD: ū(e−, p′)(???)u(νe, p) · (???), C nearly max. violated, P max. violated, T nearly obeyed

Physicswise the differences are evident from comparing Figs. 11.1 and 11.3 in the book:
• Photon never changes flavor, neither on the lepton side nor on the quark side.
•W± boson must change flavor (“exactly vertically” on leptons, “any floor change” on quarks).

Since P is maximally violated in charged-current weak interactions, it pays to recap the role
of parity. Parity is involutionary and unitary, hence it is hermitean and has eigenvalues ±1
only. From (3.51) we know P (ff̄) = −1, and analogously one can show P (bb̄) = 1. In a QFT
course one derives these properties from the spin-statistics theorem (which links b ↔ integer-
spin and f ↔ half-integer-spin). In the SM it is a generally accepted convention to have
P (e−) = P (νe) = P (q) = 1 and P (e+) = P (ν̄e) = P (q̄) = −1. In the QFT course one may
show P (γ) = P (g) = P (W±) = P (Z) = −1.

Next it pays to recap where parity conservation in QED and QCD comes from. Let us again
take a look at Fig. 11.1 in the book. The invariant amplitude is −iM = ū(p3)(+ieγµ)u(p1) ·
(−iηµν/q

2)·ū(p4)(−iqγν)u(p2), where e is positron charge, one q is the charge of quark field, while
the other q2 is the squared momentum of the photon propagator. Using the current notation
this can be rewritten as −iM = −ieqjµηµνk

ν/q2, with the electron current jµ ≡ ū(p3)γµu(p1),
and the quark current kν ≡ ū(p4)γνu(p2). The statement is that this structure conserves parity,
and things are identical for strong interactions.

Parity acts on a u-spinor as u 7→ Pu ≡ γ0u, hence ū 7→ (γ0u)†γ0 = u†γ0†γ0 = u† = ūγ0

for an anti-spinor. As a result, parity maps jµ into ū(p3)γ0γµγ0u(p1). What is γ0γµγ0 ? For
µ = 0 it is (γ0)3 = γ0, while for µ = k it is γ0γkγ0 = −γk. Overall, we find that jµ = (j0, jk)
is mapped into (j0,−jk) under P . The same statement holds for the quark current kν , since

it is again a vector current. The interaction is jµηµνk
ν = (j0,~j)(k0, ~k) = j · k, and P maps it

into (j0,−~j)(k0,−~k) = j · k. Hence we see that parity is conserved in any QED interaction
(both vertices are V -like). In QCD the vertices have extra factors λaji/2 (upstairs) and λblk/2
(downstairs), but P acts on the (4-dimensional) spinor degree of freedom, and does nothing in
color space. Hence we reach the conclusion that parity is conserved in QCD, too.

Next it is important to recap (from Phy 2) the difference between scalars and pseudo-scalars,
as well as the difference between vectors and axial-vectors. In space the parity P flips the sign
of any vector, e.g. ~x 7→ −~x and ~p 7→ −~p. In space the parity P keeps the sign of any axial-vector
(generated as the cross-product of two vectors), e.g. ~L ≡ ~x ∧ ~p 7→ (−~x) ∧ (−~p) = ~x ∧ ~p = ~L.

Another example of a vector is ~E, other axial-vectors include ~B, ~S, ~µ. Scalars emerge from ~v ·~v
and ~a · ~a, e.g. ~P 2 or m2. Pseudo-scalars emerge from ~v · ~a and ~a · ~v, e.g. helicity H ≡ ~S · ~P .

Finally, the experiment which showed that these considerations are actually needed is the fa-
mous Wu experiment (1956/57). If parity is conserved, there cannot be any difference between a
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decay product being emitted parallel/anti-parallel to an external B-field. Wu and collaborators
showed that this is what actually happens. They considered the decay 60Co −→ 60Ni∗ e− ν̄e,
where the resulting nucleus is bound in the sample, and only the emitted e− is observed, while
the ν̄e is unobserved. On a deeper level the decay is n −→ p e− ν̄e, i.e. nuclear β-decay. From
a particle physics perspective the decay is d −→ u e− ν̄e.

Take a look at Fig. 11.2 in the book. Under the effect of P the magnetic field ~B and the
magnetic moment ~µ stay invariant, while the momentum ~p of the emitted electron changes sign.
Hence, if parity is conserved, an emission parallel to ~µ ‖ ~B must be observed equally often as

an emission antiparallel to this direction (the alignment of ~µ and ~B comes from cobalt being

ferromagnetic). In other words, in a polar coordinate system with ϑ measured relative to ~B
the emission rate must be a function which is symmetric under ϑ←→ π − ϑ.

The experiment carried out by Wu and collaborators showed a very strong asymmetry –
contrary to what (almost) all physicists expected. Today it is clear that she would have deserved
the Nobel prize for this discovery. The challenge at the time (and for us now) is to figure the
underlying Feynman rules. What do the question marks in the fundamental fermion-fermion-
W± vertex and the W -propagator at the beginning of this section stand for ?

8.2 Pure V-A hypothesis of charged-current weak interactions

Lorentz-invariant objects can be formed from fermion bilinears (also ψ = χ is legal) in five
different ways. They have different degrees of freedom and thus correspond to different spin (of
the gauge boson to which the bilinear couples). The current densities ψ̄γµχ considered so far
generate “vector-like gauge theories” (with spin-1 gauge boson). The current densities ψ̄γµγ5χ
generate “axial-vector-like gauge theories” (with spin-1 gauge boson).

# name bilinear d.o.f. spin
(i) (S) scalar ψ̄χ 1 0
(ii) (V) vector ψ̄γµχ 4 1
(iii) (T) tensor ψ̄[γµ, γν ]χ 6 2
(iv) (A) axial-vector ψ̄γµγ5χ 4 1
(v) (P) pseudo-scalar ψ̄γ5χ 1 0

Around the time of the Wu experiment, some physicists suspected that charged-current
weak interactions are mediated by a (possibly massive) spin-1 gauge boson (to be called W±).
According to the table, any linear combination of (ii) and (iv) is a candidate vertex for a
DUW -vertex or a `νW vertex. We will show that a clever combination of the two can generate
maximal P -violation. For this purpose let us rewrite the generalized fermion current

jµ = ū(p′)
[
gV γ

µ + gAγ
µγ5
]
u(p)

= gV j
µ
V + gAj

µ
A with jµV ≡ ū(p′)γµu(p) and jµA ≡ ū(p′)γµγ5u(p) (8.1)

and work out the chiral structure of charged weak interactions. Under P the µ = k components
of jV flip sign, and the µ = 0 component of jA. The effect of P on the product jµηµνj

ν is thus

P : j · j 7→ g2
V jV · jV − gV gA[2jV · jA] + g2

AjA · jA (8.2)
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and the relative strength of P -violation versus P -conservation is given by the ratio of the middle
term to the other two terms. Hence, the requirement of maximal parity violation amounts to

2gV gA
g2
V + g2

A

(!)
= 1 . (8.3)

Accordingly, the Feynman rule to capture the Wu experiment requires |gV | = |gA|. This leaves
two options, a pure V-A theory (jµ ≡ jµV − j

µ
A) or a pure V+A theory (jµ ≡ jµV + jµA). Theory

alone cannot bring a decision, further experimental input is needed. The result was that the
former option is realized in nature. A convention is the prefactor gW/

√
2 ≡ gwk/

√
2, so

−i
gW√

2
γµ

1

2
(1− γ5) = −i

gW√
2
γµPL (8.4)

is the vertex factor relevant in charged-current weak interactions, whereupon

jµW ≡
gW√

2
ū(p′)γµ

1

2
(1− γ5)u(p) (8.5)

is the charged-current bilinear. Note that the neutral-current bilinear jµZ (to be discussed later)
is more complicated, it will retain the gV , gA factors, since it is not a pure V-A current.

8.3 Chiral structure of charged-current weak interactions

The pure V-A structure of the current (8.5) brings a simplification/reduction of possible inter-
action terms. We begin with the chiral decomposition (each of u, uR, uL is normalized to

√
2E)

u =
1

2
(1 + γ5)︸ ︷︷ ︸
PR

u+
1

2
(1− γ5)︸ ︷︷ ︸
PL

u ≡ aRuR + aLuL (8.6)

and list the contributions which do (or do not) survive for charged-current interactions:

QED: ūRγ
µ uR 6= 0 , ūLγ

µ uR = 0 , ūRγ
µ uL = 0 , ūLγ

µ uL 6= 0

V-A : ūRγ
µPLuR = 0 , ūLγ

µPLuR = 0 , ūRγ
µPLuL = 0 , ūLγ

µPLuL 6= 0 (8.7)

In other words, only L-chirality spinors participate in interactions with W -bosons, i.e. just
ūLγ

µPLuL. We could do the same exercise with anti-particle spinors, and the conclusion is that
only v̄Rγ

µPLvR gives a non-vanishing contribution [recall that 1
2
(1− γ5)v = vR].

In the ultra-relativistic limit chirality boils down to helicity. Hence, in the ultra-relativistic
limit (and only then) one can draw an intuitive picture of charged-current weak interactions,
see Fig. 11.4 in the book. The e− is strictly L-handed, the e+ strictly R-handed, and the νe is
strictly L-handed and the ν̄e strictly R-handed. In general particles are strictly L-handed and
antiparticles are strictly R-handed if they participate in a W -exchange. This is also shown in
Fig. 11.5 of the book, where the left panel gives the situation in the Wu experiment, and the
right panel depicts the forbidden situation which never occurred in that experiment.

In fact, this fills in the missing piece of information (V-A versus V+A) mentioned above. If
charged-current weak interactions were mediated by a pure V+A gauge theory, it would be the
other way around (particles R-chirality, anti-particles L-chirality). In short, the Wu experiment
with an additional determination of the helicity of the outgoing e− solves the question.
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8.4 Massive W-boson propagator and effective Fermi theory

The boson propagator in QED was −iηµν/q
2. In weak interactions involving a W we already

suspected that a massive gauge boson is involved. Hence, an obvious guess is that the propa-
gator might change to −iηµν/(q

2 −m2
W ). This guess takes the difference between mγ = 0 and

mW = 80.4 GeV[/c2] partly into account, but not fully.
The missing part is that the photon has only 2 spin-polarizations (because it is massless,

e.g. left-circular and right-circular). By contrast the W has 3 spin-polarizations (because it is
massive, it must allow for sz ∈ {1, 0,−1} if it propagates in z-direction). In QED we had the
completeness relation

∑
λ ε
∗λ
µ ε

λ
ν = −ηµν , where the sum is over 2 terms. In QFD the analogous

relation is
∑

λ ε
∗λ
µ ε

λ
ν = −ηµν + qµqν/m

2
W , where the sum is over 3 terms. Hence

−i

q2 −m2
W

(
ηµν −

qµqν
m2
W

)
(8.8)

is the correct propagator for the massive W boson. Note that for q2 � m2
W the second term

in the parentheses becomes sub-dominant, and one should expand (under these circumstances)
the first term in powers of q2/m2

W . Hence a crude approximation is

−iηµν
q2 −m2

W

−→ iηµν
m2
W

(8.9)

if the momentum transferred is small compared to mW ' 80.4 GeV.
In nuclear physics there is the Fermi theory as effective low-energy theory, it is a current-

current (dim=6) interaction, without a gauge propagator in between. In Fig. 11.6 of the book
the effective shrinking of the interaction, due to this approximation, is indicated. Comparing

Mfi = −
(gW√

2

)2

[ū(p3)γµ
1

2
(1− γ5)u(p1)]

ηµν − qµqν/m2
W

q2 −m2
W

[ū(p4)γν
1

2
(1− γ5)u(p2)]

Mfi =
GF√

2
ηµν [ū(p3)γµ(1− γ5)u(p1)][ū(p4)γν(1− γ5)u(p2)] (8.10)

to each other, we see there is approximate agreement (for q2 � m2
W ) if we identify

GF√
2

=
g2
W

8m2
W

(8.11)

and we finally see where the fact that GF has dimension length-squared actually comes from.
An important application of the Fermi theory concerns the strength of the charged-current

weak interaction. The decay µ− → e−νµν̄e is well described by the Fermi 4-fermion interaction,
since q2 � m2

W (why ?). Performing a non-trivial phase-space integration yields

1

τµ
' Γµ→eνν̄ =

G2
Fm

5
µ

192π3
(8.12)

where we used that this is the only relevant decay channel. The muon mass and lifetime are
known, mµ = 0.105 658 371 5(35) GeV and τµ = 2.196 981 1(22) 10−6 s, respectively, hence

GF = 1.166 378 7(6) 10−5 GeV−2 . (8.13)
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It is important to notice that this relation, together with (8.11) tells us that the weak
coupling gW ≡ gwk is not weak. It yields the dimensionless weak coupling constant

αW ≡
g2
W

4π
=

8m2
WGF

4
√

2π
(8.14)

for which the numerical value of GF , together with mW = 80.4 GeV, yields αW ' 0.034 ' 1/30.
In other words, the name “weak interactions” is somewhat misleading. It is not the coupling
strength which makes this fundamental force weak, but rather the factor 1/(8m2

W ) in (8.11),
which reflects the presence of the massive W -boson propagator at low q2.

The same fact is also highlighted in the opposite limit q2 � m2
Z . In this high-energy limit

the second line of (8.10) is not a good approximation to the first line. In this case one would
rather ignore the ηµν in the numerator and m2

W in the denominator. Hence

Mfi ' −
(gW√

2

)2

[ū(p3)γµ
1

2
(1− γ5)u(p1)]

−qµqν/m2
W

q2
[ū(p4)γν

1

2
(1− γ5)u(p2)] (8.15)

has a structure similar to what the QED Feynman rules would yield, except for ηµν →
−qµqν/m2

W in the photon propagator, the PL = 1
2
(1 − γ5) projectors, and an extra factor

1
2

convention. In this limit the electro-magnetic and charged-weak interactions look similar,
and they have a comparable magnitude (up to a factor 30/137 ' 0.22). The natural place to
test this assertion is in high-energy neutrino-nucleon versus electron-nucleon scattering.

Of course, at this point the alert student will ask himself/herself: What about running ?
Is αwk constant as a function of q2, contrary to αem(q2) and αst(q

2) ? And in case it runs, will
it grow with q2 (like the former) or decrease with q2 (like the latter) ? The answer is that the
1-loop formula (7.24) still holds true, but we need to replace Nc → 2. Hence

αwk(q2) ' αwk(µ2)

1 + [11−Nf ]αwk(µ2) ln(q2/µ2)/(6π)
(8.16)

predicts (qualitatively) the same behavior as seen in Fig. 10.14 of the book for QCD, if 11 > Nf .
Here, Nf is the number of fermion-pairs that couple to the W -current, e.g. e−ν̄e, µ

−ν̄µ, τ−ν̄τ
in the lepton sector, and ud̄, cs̄, tb̄ in the quark-sector (here things get more involved through
CKM mixing). Hence in the SM Nf = 6, and the square bracket is positive, like in QCD.

8.5 Lepton universality

An important concept in the SM is lepton universality, i.e. all lepton current-pairs couple with
the same strength to the W -boson. To understand it let us compare µ-decay to τ -decay.

The leading-order Feynman diagram for µ-decay is shown in Fig. 12.1 of the book (the
remainder is insignificant). The Feynman rule bring a factor −igW/

√
2 at both the muon and

the electron vertex, and this yields (8.12). In the event the two couplings would be different

we would have this formula with G2
F → G

(µ)
F G

(e)
F replaced, hence

Γµ→eνµν̄e =
G

(µ)
F G

(e)
F m5

µ

192π3
+ ... (8.17)

where the dots denote insignificant decay channels. The leading-order Feynman diagrams for
τ -decay are shown in Fig. 12.2 of the book (the remainder is insignificant). Since these are
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distinguishable alternatives not the amplitudes are added, but their absolute-squares, i.e. the
partial widths. Hence the total width of the τ decomposes as

Γτ ≡ Γτ→anything = Γτ→µντ ν̄µ + Γτ→eντ ν̄e + Γτ→ντdū + ... (8.18)

and the total width is the inverse of the τ -lifetime, Γτ→anything = 1/ττ . For the first and the
second term a similar decomposition of the would-be universal G2

F holds true, for instance

Γτ→eντ ν̄e =
G

(τ)
F G

(e)
F m5

τ

192π3
+ ... (8.19)

Hence, measuring ττ and τµ as well as the branching ratio

B(τ− → e−ν̄eντ ) ≡
Γ(τ− → e−ν̄eντ )

Γτ
(8.20)

yields G
(τ)
F /G

(µ)
F = 1.0023(33) which is well consistent with the assumption of the SM that

there is a universal GF for leptonic charged-current weak interactions. The hypothesis that
this feature might not hold true if measurements are made (significantly) more precise has
recently drawn attention. And (some) theorists are quick at “explaining” yet-unobserved (or
at least not-yet firmly established) phenomena in specific “beyond-standard-model theories”.

8.6 Summary

• There are two types of weak interactions: charged-current versus neutral-current.
• Charged-current interactions happen through W± exchange, neutral-current through Z0.
• Charged-current (CC) weak interactions have pure V-A structure: −igW√

2
γµ 1

2
[1− γ5].

• Neutral-current (NC) weak interactions have complicated structure: −i gW
cos(θW )

γµ 1
2
[cV − cAγ5].

• For any m the charged-current couples to L-chirality particles and R-chirality anti-particles.
• For m→ 0 the charged-current couples to L-helicity particles and R-helicity anti-particles.
• In technical terms only ūLγ

µPLuL and v̄Rγ
µPLvR yield non-zero contributions.

• All leptons couple with the same strength −igW/
√

2 to the W -boson (“lepton universality”).
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9 Neutrino flavors and MNS matrix

9.1 Old versus new SM

As an update to the “old SM”, formulated in the 1970 decade, the present “new SM” emerged
in the 1990 and 2000 decades. In the former theory neutrinos are massless; in the latter theory
neutrinos are Dirac states with m > 0. As a result, the neutrino flavors |νe〉, |νµ〉, |ντ 〉 mix into
each other, and the “new SM” has 7 more parameters (see below) than the “old SM”.

Neutrinos participate only in charged-current weak interactions, i.e. there is no ionization
in a detector. The |νe〉 is defined as the state associated with the e+ in a W+ decay, the |νµ〉 is
defined as the state associated with the µ+ in a W+ decay, and the |ντ 〉 is defined as the state
associated with the τ+ in a W+ decay. These are flavor-eigenstates, but not mass eigenstates.
By contrast, the mass-eigenstates |ν1〉, |ν2〉, |ν3〉 have masses m1,m2,m3, respectively, but they
have no lepton numbers, since they are linear superpositions of the flavor-eigenstates.

Originally (i.e. prior to the “old SM”) people thought there is only one neutrino which
couples to all leptons, so only L is conserved. If that were true, the process µ→ eγ could take
place through a 1-loop diagram, see Fig. 13.2 in the book, with a sizable amplitude. The process
has never been seen, though. In the “old SM” the lepton numbers Le, Lµ, Lτ are generationwise
conserved, so this amplitude is zero. In the “new SM” the lepton numbers Le, Lµ, Lτ are
generationwise conserved at the vertices, but the amplitude for µ → eγ is non-zero (albeit
unmeasurably small for decades to come), since this process works only through mixing.

The notion that Le, Lµ, Lτ are separately conserved emerged from short-distance exper-
iments. Take a look at Fig. 13.1 in the book; it shows the setup of the famous Columbia
2-neutrino experiment. The neutrino is produced in association with an e+. If there was only
one neutrino flavor, one would see e−, µ−, τ− in about equal numbers (in the high-energy limit
where their masses can be treated as negligible). As only e− were seen, the hypothesis emerged
that an νe is produced (rather than a generic ν) which cannot decay into an µ− or τ−.

The difference to the “new SM” is that in the latter theory only the sum L ≡ Le +Lµ +Lτ
is conserved, not Le, Lµ, Lτ individually. In other words, the neutrino flavor νe can oscillate,
in flight, to νµ or ντ . This implies that one must distinguish between mass eigenstates, to be
called ν1, ν2, ν3, and flavor eigenstates, to be named νe, νµ, ντ . The latter states have no “mass”.

9.2 Solar neutrinos

For a long time there was a “solar neutrino deficit”, i.e. fewer νe seemed to arrive on earth than
expected. The point is that the overall power release of the sun is well known. If the “solar
standard model” is correct, the sun produces a known distribution of (electron) neutrinos from
the pp-cycle, as well as known 7Be and pep peaks, and a known 8B shoulder. The expected
kinematic distribution of solar |νe〉 is shown as Fig. 13.3 in the book. One should add that
detecting neutrinos with E = O(10 MeV) is easier than with E = O(1 MeV) or E = O(100 keV),
so the difficulty increases in the figure noticeably from the right to the left.

The Homestake experiment (νe + 37
17Cl → 37

18Ar + e−, radiochemical) found fewer νe in the
8B shoulder than expected. The Superkamiokande experiment (Cherenkov light in H2O) found
fewer νe in the 8B shoulder than expected; the new ingredients are the directional information
and that some νµ are actually seen. The Sudbury Neutrino Observatory SNO (Cherenkov light
in D2O) was a significant improvement over Superkamiokande. The reason can be understood
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with Fig. 13.7 in the book. All neutrino species interact through neutral-current (NC) processes,
i.e. via Z-exchange (see right panel), and may thus trigger a d-breakup. Due to the relatively
small binding energy of the deuteron (2.2 MeV), the charged-current (CC) process (via W -
mediated νed → epp, see left panel) works only for νe, but not for νµ, ντ . By contrast, the
neutral-current (NC) process (via Z-mediated ν`d → ν`np, see right panel) is allowed for all
ν`. In addition, there is elastic scattering (ES) at the atomic electrons, see Fig. 13.5, which also
generates an asymmetry between νe and νµ, ντ (see book for details). As a result SNO found

flux(νe) = 1.76(10) · 10−6 cm−2 s−1

flux(νµ) + flux(ντ ) = 3.41(63) · 10−6 cm−2 s−1 (9.1)

to be compared to the expected flux(νe) = 5.1(9) ·10−6 cm−2 s−1 in the “solar standard model”.
What catches our attention is that the two numbers in (9.1), when added, match the ex-

pectation pretty well. In addition the first line of (9.1) is perfectly consistent with the results
of Homestake and Superkamiokande. A natural hypothesis is thus that νe are produced at the
expected rate in the core of the sun, but oscillate into νµ, ντ on their way to the earth.

9.3 Weak versus mass eigenstates

The Hamiltonian has eigenstates |νi〉 (i = 1, 2, 3) which, at any given time, relate to the weak
eigenstates |να〉 (α = e, µ, τ) unitarily. At any fixed t the relation is

|να〉 =
3∑
i=1

Uαi|νi〉 or |νi〉 =
∑
α

(U †)iα|να〉 =
∑
α

U∗αi|να〉 . (9.2)

Solar neutrinos have energies O(1 MeV); in comparison their rest-masses are small (from cos-
mology one has the bound

∑3
i=1mi < 0.2 eV; the concept of mass is mis-conceived for νe, νµ, ντ ).

As a result neutrinos propagate ultra-relativistically. Feynman rules can be formulated in terms
of flavor-eigenstates (“standard”) or mass-eigenstates (“alternative”).

• Standard Feynman rules (να immediately starts oscillating, α ∈ {e, µ, τ}, see Fig. 13.11):
να → `−αW vertex is −igW√

2
ū(`α)γµPLu(να)

`+
α → ν̄αW vertex is −igW√

2
v̄(`α)γµPLv(να)

W → `−α ν̄α vertex is −igW√
2
ū(`α)γµPLv(να)

• Alternative Feynman rules (νi stays till next vertex, i ∈ {1, 2, 3}, see Fig. 13.10):
νk → `−αW vertex is −igW√

2
ū(`α)γµPLUαku(νk)

`+
α → ν̄kW vertex is −igW√

2
v̄(`α)γµPLUαkv(νk)

W → `−α ν̄k vertex is −igW√
2
ū(`α)γµPLUαkv(νk)

All of these have the structure x̄(`α)...y(νk) with Uαk and x, y ∈ {u, v}.

ν̄k → `+
αW vertex is −igW√

2
v̄(νk)γ

µPLU
∗
αkv(`α)

`−α → νkW vertex is −igW√
2
ū(νk)γ

µPLU
∗
αku(`α)

W → `+
ανk vertex is −igW√

2
ū(νk)γ

µPLU
∗
αkv(`α)

All of these have the structure x̄(νk)...y(`α) with U∗αk and x, y ∈ {u, v}.
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9.4 Neutrino oscillation with 2 flavors

The mixing is described by a matrix U ∈ SU(2), and SU(2) has 8− 4− 1 = 3 parameters, but
2 can be absorbed into fields, so 1 relevant parameter remains. Thus we consider

|νe(0)〉 = |ν1(0)〉 cos θ + |ν2(0)〉 sin θ

|νµ(0)〉 = −|ν1(0)〉 sin θ + |ν2(0)〉 cos θ (9.3)

where the mixing angle θ is a fundamental constant (like θC in quark physics, see later), and

|ν1(0)〉 = |νe(0)〉 cos θ − |νµ(0)〉 sin θ

|ν2(0)〉 = |νe(0)〉 sin θ + |νµ(0)〉 cos θ (9.4)

is the inverse relation. Any mass eigenstate (ES) evolves, for ~p = p~ez, through the QM phase

|νi(t)〉 = |νi(0)〉 e−i[Et−pz] (9.5)

with z ' t and E − p =
√
p2 +m2

i − p ' p(1 +
m2
i

2p2
)− p =

m2
i

2p
, so

|νi(t)〉 ' |νi(0)〉 e−im2
i t/(2p) . (9.6)

As a result we have

|νe(t)〉 = |ν1(0)〉e−im2
1t/(2p) cos θ + |ν2(0)〉e−im2

2t/(2p) sin θ

|νµ(t)〉 = −|ν1(0)〉e−im2
1t/(2p) sin θ + |ν2(0)〉e−im2

2t/(2p) cos θ (9.7)

and the amplitude for νe → νe is given by

Aνe→νe(t) ≡ 〈νe|νe(t)〉
= 〈νe|ν1(0)〉e−im2

1t/(2p) cos θ + 〈νe|ν2(0)〉e−im2
2t/(2p) sin θ

= e−im2
1t/(2p) cos2 θ + e−im2

2t/(2p) sin2 θ (9.8)

where in the last step relation (9.4) was plugged in, and the orthogonality of |ν1〉, |ν2〉 was used.
Taking the modulus squared yields the “survival probability”

Pνe→νe(t) = cos4 θ + 2 cos2 θ sin2 θ cos
((m2

2 −m2
1)t

2p

)
+ sin4 θ

= 1− sin2(2θ) sin2
(δm2 t

2p

)
(9.9)

where δm2 ≡ |m2
2 −m2

1| is the gap between the squared masses.
An analogous calculation for νe → νµ or unitarity yield the “oscillation probability”

Pνe→νµ(t) = sin2(2θ) sin2
(δm2 t

2p

)
(9.10)

and we learn: (i) the oscillation probability knows about δm2 ≡ |m2
2 − m2

1|, not about the
individual masses (even the hierarchy does not matter), (ii) the oscillation time/length scales
inversely with the neutrino energy (here p). A rewrite in terms of the oscillation length yields

Pνe→νµ(L) = sin2(2θ) sin2
(

1.27
δm2[eV2] · L[m]

Eν [MeV]

)
(9.11)
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since c ' L/t and p ' E. An illustration is given in Fig. 13.12 of the book. The “transition
probability” (full line) and “survival probability” (dashed line) are shown as a function of L/km.
The former one never exceeds sin2(2θ) ' 0.8, the latter one never falls below 1− sin2(2θ) ' 0.2.
In retrospect it is clear why the Columbia 2-neutrino experiment suggested that Le, Lµ, Lτ
might be individually conserved; the whole experiment took place at a distance L� 1 km.

Let us add that such appearance/disappearance experiments can be performed with neutri-
nos or anti-neutrinos at the source. In addition, any combination of electron/muon-neutrinos
(in the 2-flavor case) can be used. A quick summary is given in the table.

name type production process
sun νe from p+p+ → d+e+νe
atmosphere νµ, ν̄µ, νe, ν̄e secondary from cosmic rays
reactor ν̄e from n→ p+e−ν̄e
accelerator νµ, ν̄µ from µ+ → e+νeν̄µ, µ− → e−ν̄eνµ

9.5 Neutrino oscillation with 3 flavors

The mixing is described by a matrix U ∈ SU(3), and SU(3) has 18 − 9 − 1 = 8 parameters,
but 4 can be absorbed into fields, so 4 relevant parameters remain. Thus we consider|νe〉|νµ〉

|ντ 〉


︸ ︷︷ ︸
weak ES

=

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


︸ ︷︷ ︸

UMNS

|ν1〉
|ν2〉
|ν3〉


︸ ︷︷ ︸
mass ES

(9.12)

and the letters (P)MNS stand for Pontecorvo-Maki-Nakagawa-Sakata who introduced it.
There is a zillion ways to parametrize an SU(3) matrix. The “standard parametrization”

UMNS =

1
c23 s23

−s23 c23

 c31 −s31e
−iδ

1
s31e

iδ c31

 c12 s12

−s12 c12

1


=

 c12c31 s12c31 s31e
−iδ

−s12c23 − c12s23s31e
iδ c12c23 − s12s23s31e

iδ s23c31

s12s23 − c12c23s31e
iδ −c12s23 − s12c23s31e

iδ c23c31

 (9.13)

is the most useful/common one, and it will be reused in the CKM context (i.e. in quark physics)
below. Note that it has 3 angles (θ12, θ23, θ31) and one phase (δMNS); the abbreviations used are
c12 ≡ cos θ12, s12 ≡ sin θ12, and similar for θ23, θ31. In this parametrization only the upper-right
1× 1 entry and the lower-left 2× 2 block are xomplex, but this is a convention.

A typical “survival probability” picture with 3 flavors is shown in Fig. 13.18 of the book.
There are two amplitudes; sin2(2θ12) ' 0.1 governs the smaller (short-time/scale) oscillation,
sin2(2θ31) ' 0.8 governs the larger (long-time/scale) oscillation. By tracing out such oscilla-
tions, one can determine the angles θ12, θ23, θ31 from the oscillation maxima/minima. In close
analogy to eqn. (9.10) in the 2-flavor case, the oscillation periods yield information on the gaps
m2

2 −m2
1, m2

3 −m2
1, m2

3 −m2
2 (of which only two are independent).

Let us comment on two physics issues. The phase δ ≡ δMNS is one of two sources of CP-
violation in the SM (the phase δCKM in the quark sector will be discussed below). The latter
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phase is known quite accurately, the former one less so. It seems unlikely that these two sources
of CP-violation can (together) explain the strength of the baryon asymmetry in the universe (cf.
Sacharov criteria below), but the last word on this is issue is not yet spoken. In the event the
neutrinos have a Majorana component (i.e. may oscillate into their anti-particles; this would
amount to a process with |∆Le| = 2 or |∆Lµ| = 2 or |∆Lτ | = 2) there would be two additional
CP-violating phases, since UMNS is right-multiplied with a matrix diag(eiα1 , eiα2 , 1).

9.6 Experimental results

Experimental results are desired for three masses m1,m2,m3, three angles θ12, θ23, θ31, and one
phase δ. In total 7 quantities need to be measured.

In the 2-flavor case oscillation measurements can determine only the gap δm2 ≡ m2
2 −m2

1

between the squared masses, not the individual masses m1,m2. Here we omit the modulus
symbol; we simply define m1 to be the lighter one of the two masses.

In the 3-flavor case the situation is similar; only the smaller gap δm2 ≡ m2
2−m2

1, as well as
the larger (by absolute magnitude) gap ∆m2 ≡ m2

3 − (m2
1 + m2

2)/2 (which can be positive or
negative) can be determined. The current experimental situation can be summarized as

δm2 ≡ m2
2 −m2

1 = 7.5(2) 10−5 eV2 −→ max(m1,m2) ' 0.009 eV

∆m2 ≡ m2
3 −

m2
1 +m2

2

2
= ±2.4(1) 10−3 eV2 −→ max(m3, ... ) ' 0.049 eV (9.14)

and this means that the hierarchy of the three masses is not yet pinned down. There can be a
“normal hierarchy” or an “inverted hierarchy”, see Fig. 13.15 of the book.

In addition, the mixing angles and the phase have been determined (in the latter case with
significant experimental uncertainty). The present state of knowledge is summarized as

θ12 = 34(1)◦ , θ23 = 47(2)◦ , θ31 = 8.5(1)◦ , δ = 235(35)◦ (9.15)

which indicates near-maximal mixing between the 2nd and 3rd generation (θ23 ∼ 45◦). And

|UMNS| ≡

|Ue1| |Ue2| |Ue3||Uµ1| |Uµ2| |Uµ3|
|Uτ1| |Uτ2| |Uτ3|

 '
0.85 0.50 0.17

0.35 0.60 0.70
0.35 0.60 0.70

 (9.16)

indicates that there is no obvious hierarchy in the absolute magnitudes of the entries. In the
next section we will see that UMNS is numerically quite different from its cousin UCKM.

9.7 Summary

• In the pre-SM there is one (massless) neutrino; only the total lepton number L is conserved.
• In the old-SM there are 3 massless neutrinos, and Le, Lν , Lτ are separately conserved.
• In the new-SM the 3 neutrinos are massive and mix; due to oscillations only L is conserved.
• Flavor-eigenstates |νe〉, |νµ〉, |ντ 〉 and mass-eigenstates |ν1〉, |ν2〉, |ν3〉 are related via UMNS.
• All neutrino physics is captured in 7 parameters (masses m1,2,3 and θ12,23,31, δMNS of UMNS).
• Squared-mass-gaps and mixing angles can be determined in oscillation experiments.
• The phases δMNS and δCKM are the only relevant sources of CP-violation in the SM.
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10 Quark flavors and CKM matrix

10.1 CP-violation in the early universe

Astronomers spent a great deal of effort to establish that celestial bodies are made from matter
and not anti-matter. This holds true in our solar system, in the systems formed by nearby
stars and their planets (if any), in the milkyway, in the neighborhood of our galaxy, in distant
galaxies – in fact in the whole visible universe. How could that happen ?

We tend to think that fundamental laws of physics should have a high degree of symmetry,
while asymmetries are created by external (initial) conditions. Hence, the question is whether
a given asymmetry is enhanced or diminished as the system evolves in time.

The baryon asymmetry of the universe (i.e. the excess of the number of baryons over anti-
baryons) is linked to CP-violation in the early universe. The early phase is characterized by
a period with kT � MB, where B ∈ {p+, n0, ...} is any baryon in the SM. As long as this
condition is met, there is a forward-backward balance in the reaction γ + γ −→←− p+ p̄. But two
epochs affect one or the other direction. The epoch of “decoupling” basically stops the forward
reaction (see literature/wikipedia for details). The epoch of “baryogenesis” thins the density
of the universe so much that even the backward reaction becomes very rare.

As a result, both nB and nB̄ are fixed to a number which implies (nB−nB̄)/nγ ' 10−9. We
may think of every photon in the universe (there are about 1...2 · 1089 of them) as stemming
from the backward reaction mentioned above. This amounts to the statement that for 109

anti-baryons there were 109 + 1 baryons, and all but the 1 annihilated.
In 1967 Sakharov formulated three criteria which need to be satisfied to establish a matter

anti-matter asymmetry in the universe: (i) there must be B-violating processes [B ≡ nB−nB̄],
(ii) the discrete symmetries C and CP must be violated, (iii) there must be sufficient departure
from equilibrium. Recall that C is nearly maximally violated in weak interactions, so we should
focus our attention on whether there is sufficient CP violation to “explain” the baryon anti-
baryon asymmetry in the universe.

In the SM there are (in total) three known sources of CP-violation: (a) the phase δMNS in
UMNS [previous section], (b) the phase δCKM in UCKM [this section], (c) the angle θ in LQCD+θ

[non-perturbative effect, empirically θ = 0]. As a result, the phenomenologically relevant
question is whether the sources (a) and (b) are (together) strong enough to explain the baryon
asymmetry in the universe. This question is not completely answered yet (most experts think
the answer is likely negative). If this is to evolve into an established fact, it would be a clear
indication that there must be physics beyond the standard model (BSM).

10.2 Cabibbo angle for 2 flavors

Consider Fig. 14.1 in the book. The left panel shows the decay µ− → νµe
−ν̄e, with two vertex

factors G
(µ) 1/2
F and G

(e) 1/2
F (fundamentally either one stands for gW/

√
2). The right panel shows

a similar diagram, except that µ− → νµ is replaced by the quark line d→ u, and G
(µ)
F is replaced

by G
(du)
F [in the book called G

(β)
F ]. We could draw a similar diagram where the quark line is

s→ u; the associate factor would be G
(su)
F . In fact, any down-type to up-type quark line would

work; this yields in total 9 different factors G
(DU)
F with D ∈ {d, s, b} and U ∈ {u, c, t}.

In Sec. 8 we found “lepton universality”, i.e. G
(e)
F = G

(µ)
F = G

(τ)
F is the same for all lepton
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flavors. Does this feature extend to charged-current weak interactions with quark vertices ?
In other words, is the universal leptonic GF identical to G

(du)
F and G

(su)
F ? Experiment finds

G
(e)
F > G

(du)
F � G

(su)
F . Hence the answer is “no”, but it is interesting to note that the suppression

factors, when squared, add up to 1 (in very good approximation).
A way to incorporate this is depicted in Fig. 14.2 of the book. We should equip the d→ u

transition with an extra factor cos(θC), s → u with an extra factor sin(θC), d → c with an
extra factor − sin(θC), and s → c with an extra factor cos(θC). The angle θC is referred to as
the “Cabibbo angle”. A glimpse at the quark table in Sec. 1 shows that a “vertical transition”
gets an extra factor cos(θC), while a “crossing transition” gets an extra factor ± sin(θC).

Taking another look at Fig. 14.2 we realize that we could combine the 1st and the 2nd panel
into a single d′ → u transition, if we define |d′〉 as the linear combination cos(θC)|d〉+sin(θC)|s〉.
In a similar spirit we might combine the 3rd and the 4th panel into a single s′ → c transition,
if we define |s′〉 as the linear combination − sin(θC)|d〉+ cos(θC)|s〉. In other words,(

|d′〉
|s′〉

)
︸ ︷︷ ︸
weak ES

=

(
cos(θC) sin(θC)
− sin(θC) cos(θC)

)
︸ ︷︷ ︸

Cabibbo rotation

(
|d〉
|s〉

)
︸ ︷︷ ︸
mass ES

(10.1)

is a rotation among the first 2 generations of the D-quarks. Alternatively, one could have
introduced the rotation among the first 2 generations of the U -quarks, but historically the
former option was chosen (at the time the c-quark was not yet discovered). As an aside, please
note that one can not mix quarks with unequal electric charge.

A way to measure θC is to compare the leptonic decays π−(dū)→ µ−ν̄µ andK−(sū)→ µ−ν̄µ.
As can be seen from Fig. 14.3 in the book, in both cases a W boson is created which subsequently
decays into µ−ν̄µ. The left vertices of the diagrams differ by a factor cos(θC) or sin(θC),
respectively, the right factors are both gW/

√
2. As a result, we have the exclusive widths

Γ(π− → µ−ν̄µ) ∝ | cos(θC) g2
W/2|2 ∝ cos2(θC)G2

F

Γ(K− → µ−ν̄µ) ∝ | sin(θC) g2
W/2|2 ∝ sin2(θC)G2

F (10.2)

and from the ratio one obtains tan2(θC). The number people have in mind is

cos(θC) = 0.97425(22) or θC ' 13◦ (10.3)

and this means that the mixing is small, i.e. d′ is predominantly d, and s′ is predominantly s.
Coming back to (10.1), it seems that everything is conceptually identical to the situation

in neutrino physics. There the “weak ES” was |νe〉, |νµ〉, |ντ 〉, arranged as column vector, and
“mass ES” was |ν1〉, |ν2〉, |ν3〉, see (9.12). However, the role of “flavor ES” is different; in
neutrino physics the LHS is a flavor ES, in quark physics the RHS is a flavor ES.

10.3 CKM matrix for 3 flavors

The Cabibbo mixing for 2 generations naturally generalizes to the Kobayashi-Maskawa mixing
for 3 generations. The defining equation for the CKM matrix is|d′〉|s′〉

|b′〉


︸ ︷︷ ︸
weak ES

=

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb


︸ ︷︷ ︸

VCKM

|d〉|s〉
|b〉


︸ ︷︷ ︸
mass ES

(10.4)
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and one should remember that U -quarks serve as row-index, and D-quarks serve as column in-
dex. Again, the mass eigenstates simultaneously serve as flavor eigenstates (in contradistinction
to the situation in neutrino physics).

The standard Feynman rules in quark physics are in terms of the flavor=mass eigenstates,
but with the CKM matrix elements as extra factors. Take a look at the upper three panels in
Fig. 14.5, and augment that row by a fourth panel with the vertex ūd→ W−. Then

jµCC ≡ −i
gW√

2
ū(u)γµPLu(d) · Vud

jµCC ≡ −i
gW√

2
v̄(u)γµPLv(d) · Vud

jµCC ≡ −i
gW√

2
ū(u)γµPLv(d) · Vud

jµCC ≡ −i
gW√

2
v̄(u)γµPLu(d) · Vud (10.5)

would give a summary of the effect of the CC weak Feynman rules for these four vertices. Now
take a look at the lower three panels in Fig. 14.5, and augment that row by a fourth panel with
the vertex d̄u→ W+. In this case the CC weak Feynman rules give

jµCC ≡ −i
gW√

2
ū(d)γµPLu(u) · V ∗ud

jµCC ≡ −i
gW√

2
v̄(d)γµPLv(u) · V ∗ud

jµCC ≡ −i
gW√

2
ū(d)γµPLv(u) · V ∗ud

jµCC ≡ −i
gW√

2
v̄(d)γµPLu(u) · V ∗ud (10.6)

and we need a “rule of thumb” to decide whether VUD or V ∗UD shows up (here we generalize
to all 9 elements of VCKM). Whenever the U -type quark is in the adjoint spinor (left) and the
D-type quark in the ordinary spinor (right), it is VUD. Whenever the D-type quark is in the
adjoint spinor (left) and the U -type quark in the ordinary spinor (right), it is V ∗UD.

The CKM matrix can be parametrized in a zillion ways. The “standard parametrization”

VCKM =

1
c23 s23

−s23 c23

 c31 −s31e
−iδ

1
s31e

iδ c31

 c12 s12

−s12 c12

1


=

 c12c31 s12c31 s31e
−iδ

−s12c23 − c12s23s31e
iδ c12c23 − s12s23s31e

iδ s23c31

s12s23 − c12c23s31e
iδ −c12s23 − s12c23s31e

iδ c23c31

 (10.7)

proceeds in exactly the same manner as in Sec. 9, and it is highly practical. Despite the
similarity in setup, the angles and the phase are different now. To minimize the risk of confusion,
we call them φ12, φ23, φ31, and δCKM, respectively.

Physicswise the important issue is that δCKM generates CP-violation (now through quark-
line CC weak interactions). For δCKM 6= 0 the upper-right element and the lower-left 2×2 block
are complex, while all other entries are real. Note that the Cabibbo rotation matrix discussed

64



above is the upper-left 2 × 2 block of VCKM. Obviously, for this to be true the requirements
c12c31 ' c12c23 − s12s23s31e

iδ and s12c31 ' s12c23 + c12s23s31e
iδ both need to be satisfied (which

is the case, see below). Of profound phenomenological importance are the unitarity relations

|Vud|2 + |Vus|2 + |Vub|2 = 1 ← |row1|2 = 1

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1 ← |row2|2 = 1

|Vtd|2 + |Vts|2 + |Vtb|2 = 1 ← |row3|2 = 1

V ∗udVcd + V ∗usVcs + V ∗ubVcb = 0 ← row1 ⊥ row2

... ← row2 ⊥ row3

... ← row3 ⊥ row1

... ← col1 ⊥ col2

... ← col2 ⊥ col3

V ∗ubVud + V ∗cbVcd + V ∗tbVtd = 0 ← col3 ⊥ col1 (10.8)

where math tells us that the three conceivable normalization conditions for the columns provide
no new information. In Fig. 14.25 of the book we see the use case of the last condition (which is
the phenomenologically relevant one). Divide this relation by V ∗cbVcd, so that it takes the form

V ∗ubVud
V ∗cbVcd

+ 1 +
V ∗tbVtd
V ∗cbVcd

= 0 (10.9)

and think of the three complex numbers as a vectors in the 2-dimensional (ρ, η)-plane. Starting
with the apex (top corner), the relation states the closedness of the unitarity triangle of the SM.
Note that the area of this triangle is proportional to the amount of CP-violation (δCKM ∝ η).
The angle α (near the apex) is very close to a right angle, but in the SM it is a combination of
fundamental parameters (with arbitrary values) which by chance yields α ' 90◦.

The magnitude of the elements is found (in experiment) to be

|VCKM| =

|Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 '
0.974 0.225 0.004

0.225 0.973 0.041
0.009 0.040 0.999

 (10.10)

whereupon the CKM matrix is diagonally dominated (in contradistinction to the MNS matrix).
As a result of this structure, it makes (here) sense to introduce the Wolfenstein parametrization

VCKM =

 1− 1
2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4) (10.11)

which, in principle, is an infinite series in powers of λ. Note that at O(λ3) only two elements
(Vub and Vtd) are complex, in contradistinction to the standard parametrization. Of course,
going to higher order will eventually establish complete agreement.

10.4 Summary

• Unitary matrix VCKM parametrizes mixing among the D-type quarks (φ12, φ23, φ31 and δCKM).
• VCKM is diagonally dominated (2× 2 block is close to Cabibbo rotation), while UMNS is not.
• Standard unitarity triangle captures col3 ⊥ col1, its area measures amount of CP violation.
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11 Electroweak unification

11.1 W -decay and unitarity in WW pair-production

If the W would appear as an external particle, we would use the three polarizations

ε(+)µ = − 1√
2

(0, 1, i, 0) , ε(0)µ =
1

mW

(p, 0, 0, E) , ε(−)µ = +
1√
2

(0, 1,−i, 0) (11.1)

(positive and negative helicity, transversal) to define the invariant matrix elements

−iM
(λ)
fi = ε(λ)

µ (p1) ū(p3)[−i
gW√

2
γµPL]v(p4) (11.2)

for the kinematics shown in Fig. 15.1 of the book with p2
3 =m2

e, p
2
4'0 and λ ∈ {+, 0,−}. With

M
(λ)
fi =

gW√
2
ε(λ)
µ (p1) jµ(p3, p4) and jµ(p3, p4) ≡ ū(p3)[γµ

1

2
(1− γ5)]v(p4) (11.3)

an equivalent formulation is given which involves the lepton current jµ. Given mZ ' 80.4 GeV,
taking the electron and neutrino as massless particles is a good approximation. This yields

p•1 = (mW , 0, 0, 0) , p•3 = (E,E sin(ϑ), 0, E cos(ϑ)) , p•4 = (E,−~p3) (11.4)

with E ≡ 1
2
mW in the Lab system, and ϑ the angle between the e− and the z-axis (see Fig. 15.2).

Chirality selection rules imply jµ(p3, p4) −→ ū↓(p3)γµv↑(p4), and a standard evaluation yields
jµ −→ mW (0,− cos(ϑ),−i, sin(ϑ)). Specifically, for the W at rest ε(0)µ −→ (0, 0, 0, 1), so

M
(+)
fi =

gWmW

2
(0,+1,−i, 0) · (0,− cos,−i, sin) =

1

2
gWmW (1 + cos(ϑ))

M
(0)
fi =

gWmW√
2

(0, 0, 0, 1) · (0,− cos,−i, sin) = − 1√
2
gWmW sin(ϑ) (11.5)

M
(−)
fi =

gWmW

2
(0,−1,−i, 0) · (0,− cos,−i, sin) =

1

2
gWmW (1− cos(ϑ))

and taking the absolute square yields

|M (+)|2 = g2
Wm

2
W

1

4
(1 + cos)2 , |M (0)|2 = g2

Wm
2
W

1

2
sin2 , |M (−)|2 = g2

Wm
2
W

1

4
(1− cos)2

as illustrated in Fig. 15.3. If the initial W was unpolarized, we have gotten to average

〈|Mfi|2〉 =
1

3

[
|M (+)|2 + |M (0)|2 + |M (−)|2

]
=

1

3
g2
Wm

2
W

[1

4
(1 + cos)2 +

1

2
sin2 +

1

4
(1− cos)2

]
=

1

3
g2
Wm

2
W (11.6)

which looks plausible, as it is isotropic. Integrating over the 4π sphere yields the partial width

Γ(W− → e−ν̄e) =
p∗

32π2m2
W

∫
〈|Mfi|2〉 dΩ =

p∗

32π2m2
W

1

3
g2
Wm

2
W 4π =

p∗

24π
g2
W (11.7)
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where p∗ is the absolute value of the three-momentum of the e− (the ν̄ is not seen), so

Γ(W− → e−ν̄e) =
1

48π
g2
WmW (11.8)

for this decay channel. Using Γ(W− → e−ν̄e) = Γ(W− → µ−ν̄µ) = Γ(W− → τ−ν̄τ ) yields

Γ(W− → `−ν̄`, summed) = 3Γ(W− → e−ν̄e) =
1

16π
g2
WmW (11.9)

for the decay into any charged-uncharged lepton pair. But the W− may also decay into quarks

Γ(W− → dū) = 3|Vud|2Γeν̄ , Γ(W− → dc̄) = 3|Vcd|2Γeν̄ , Γ(W− → dt̄) = 0

Γ(W− → sū) = 3|Vus|2Γeν̄ , Γ(W− → sc̄) = 3|Vcs|2Γeν̄ , Γ(W− → st̄) = 0 (11.10)

Γ(W− → bū) = 3|Vub|2Γeν̄ , Γ(W− → bc̄) = 3|Vcb|2Γeν̄ , Γ(W− → bt̄) = 0

where we use that the coupling is still gW/
√

2, see (11.2), for the flavor eigenstates, i.e. for
W− → d′ū. We also take into account that there are 3 colors, and that the top is kinematically
excluded (mW < mt). Using (10.8) the partial width for a W decaying into any DŪ -pair is

Γ(W− → DŪ, summed) = 6Γ(W− → e−ν̄e) =
1

8π
g2
WmW (11.11)

and including radiative corrections (see Fig. 14.4) amounts to equipping the hadronic contribu-
tions with a QCD enhancement factor [1 + αS(m2

W )/π] ' 1.038. This yields the total width

ΓW =
(

3 + 6[1 + αS(m2
W )/π]

)
Γ(W− → e−ν̄e) ' 0.061 g2

WmW ' 2.1 GeV (11.12)

and predicts the branching fraction for hadronic decays to be

B(W− → DŪ) =
6[1 + αS/π]

3 + 6[1 + αS/π]
= 0.675 . (11.13)

By similar means the cross-section for e+e− → W+W− can be worked out. In Fig. 15.5 two
contributions are shown we are familiar with (ν-exchange in the t-channel, γ-exchange in the
s-channel). The prediction with only ν-exchange is bigger than with both ν and γ-exchange
(dotted versus dashed line in Fig. 15.6). The SM knows a third contribution, Z-exchange in
the s-channel (third panel in Fig. 15.5), and together they give the full line in Fig. 15.6. This
is possible, since the 2nd and 3rd contribution interferes negatively with the 1st one

|Mν +Mγ +MZ |2 � |Mν +Mγ|2 � |Mν |2 (11.14)

and indeed the data of LEP were found to lie on the lowest (full) line. Furthermore, there is
also a theory argument which indicates that the theory with only the first (or the first two)
contributions cannot be correct. These cross-sections grow without bound as a function of

√
s,

thus violating unitarity at some
√
s∗ (“Froissart bound”, see QFT course). It seems remarkable

that an incomplete theory may thus point out its own limitations to the sapient physicist.
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11.2 Weak interaction gauge group SU(2) in two representations

The Lie group SU(2)L of weak interactions acts on a field φ(x) as

φ(x) −→ φ′(x) ≡ exp(igW ~α(x)~T )φ(x) with ~T ≡ 1

2
~σ (11.15)

where the T a and thus exp(.) are 2× 2 matrixes, hence it acts on a vector

φ(x) ≡
(
νe(x)
e−(x)

)
(11.16)

known as a “weak doublet” which transforms like an isospin doublet in strong interactions.
Since the CC weak interaction affects only the L-chiralities of these particles, we should put
only the νe(x)L and e−(x)L into this doublet. Since the νe(x)R and e−(x)R are unaffected, we
must put them into a singlet. Hence, the leptonic part of the first generation is described as

doublet

(
νe(x)
e−(x)

)
L

, singlet νe(x)R , singlet e−(x)R . (11.17)

In total we have 6 doublets under SU(2)L transforming in the fundamental representation(
νe
e−

)
L

,

(
νµ
µ−

)
L

,

(
ντ
τ−

)
L

,

(
u
d′

)
L

,

(
c
s′

)
L

,

(
t
b′

)
L

(11.18)

and 12 singlets under SU(2)L transforming in the trivial representation

νe,R , νµ,R , ντ,R , e−R , µ
−
R , τ

−
R , uR , cR , tR , dR , sR , bR . (11.19)

In analogy with strong interactions, we also attribute them weak isospin I = 1
2

in the doublet
and I = 0 in the singlet, along with I3 = ±1

2
in the doublet and I3 = 0 in the singlet. Note

that the doublets contain weak eigenstates and thus account for the CKM mixings.
The requirement of local gauge invariance enforces the presence of the interaction term

igWγ
µT aφL W

a
µ (11.20)

in the Dirac equation, where a is an adjoint index of SU(2) (so the implicit summation is
a = 1...3, besides the one over µ). Plugging everything in, we have the three weak currents

jµ1 ≡ gW φ̄Lγ
µσ1

2
φL , jµ2 ≡ gW φ̄Lγ

µσ2

2
φL , jµ3 ≡ gW φ̄Lγ

µσ3

2
φL (11.21)

with φL ≡ (νL eL)trsp or (uL dL)trsp a column-vector and φ̄L ≡ (ν̄L ēL) or (ūL d̄L) a row-vector
in weak isospin space. To make the connection to physics clear, we focus on the term

~jµ ~Wµ =
∑
a

jµaW
a
µ (11.22)

in the interaction part. Using σ± ≡ 1
2
(σ1 ± iσ2) it makes sense to introduce the currents

jµ± ≡
gW√

2
φ̄Lγ

µσ±φL =
gW√

2
φ̄Lγ

µ1

2
(σ1 ± iσ2)φL =

1√
2

(
jµ1 ± ijµ2

)
(11.23)
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which couple to the linear combinations

W±
µ ≡

1√
2

(
W 1
µ ∓ iW 2

µ

)
(11.24)

of the gauge boson fields. This follows from

2jµ+W
+
µ + 2jµ−W

−
µ = (jµ1 + ijµ2 )(W 1

µ − iW 2
µ) + (jµ1 − ijµ2 )(W 1

µ + iW 2
µ)

= jµ1W
1
µ − ijµ1W

2
µ + ijµ2W

1
µ + jµ2W

2
µ

+ jµ1W
1
µ + ijµ1W

2
µ − ijµ2W

1
µ + jµ2W

2
µ

= 2jµ1W
1
µ + 2jµ2W

2
µ (11.25)

and as a result we confirm the decomposition

~jµ ~Wµ ≡
∑
a

jµaW
a
µ = jµ+W

+
µ + jµ−W

−
µ + jµ3W

3
µ (11.26)

whereupon the sum a = 1, 2, 3 has effectively been traded for a sum a = +,−, 3.
The current jµ+ corresponds to an exchange of a W+ boson and can be expressed as

jµ+ =
gW√

2
φ̄Lγ

µσ+φL =
gW√

2

(
ν̄L ēL

)
γµ
(

0 1
0 0

)(
νL
eL

)
=

gW√
2
ν̄Lγ

µeL =
gW√

2
ν̄γµPLe =

gW√
2
ν̄γµ

1

2
(1− γ5)e (11.27)

while jµ− corresponds to an exchange of a W− boson and can be expressed as

jµ− =
gW√

2
φ̄Lγ

µσ−φL =
gW√

2

(
ν̄L ēL

)
γµ
(

0 0
1 0

)(
νL
eL

)
=

gW√
2
ēLγ

µνL =
gW√

2
ēγµPLν =

gW√
2
ēγµ

1

2
(1− γ5)ν (11.28)

and the respective vertices are displayed in Fig. 15.7. For the third current we obtain

jµ3 =
gW
2
φ̄Lγ

µσ3φL =
gW
2

(
ν̄L ēL

)
γµ
(

1 0
0 −1

)(
νL
eL

)
=

gW
2
ν̄Lγ

µνL −
gW
2
ēLγ

µeL =
gW
2
ν̄γµ

1

2
(1− γ5)ν − gW

2
ēγµ

1

2
(1− γ5)e (11.29)

with more terms than j±. Using I3(νe) = 1
2

and I3(e−) = −1
2

we may write this as

jµ3 = I3 gW ¯̀γµ
1

2
(1− γ5)` with ` ∈ {νe, e−, νµ, µ−, ντ , τ−} (11.30)

hence packing the weak isospin assignments made above into the coupling allows for a significant
simplification. The respective vertices are shown in Fig. 15.8. The W 3 is not the Z0, but you
may feel reminded of the lesson learned in GETA that the Z0 does not change flavor.
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11.3 Weak isospin and hypercharge for SU(2) doublets and singlets

The Lie Group U(1)Y of the hypercharge Y (i.e. prior to W 3-B-mixing) acts on a field ψ(x) as

ψ(x) −→ ψ′(x) ≡ UY (x)ψ(x) = exp
(

igY
Y

2
β(x)

)
ψ(x) (11.31)

resulting in an interaction term igY
y
2
γµψBµ in the Dirac equation, where y is the value of the

operator Y on the field ψ. This is similar to the U(1)Q ≡ U(1)em transformation which gave
raise to an interaction term iqγµψAµ, except that Q is replaced by Y/2.

As they share quantum numbers, there is nothing which prevents W 3 and B from mixing

Aµ = +Bµ cos(θW) +W 3
µ sin(θW)

Zµ = −Bµ sin(θW) +W 3
µ cos(θW)

(11.32)

which is accompanied by an analogous mixing of the currents (θW is the “Weinberg angle”)

jµA = +jµY cos(θW) + jµ3 sin(θW)
jµZ = −jµY sin(θW) + jµ3 cos(θW)

. (11.33)

If we identify A with the electromagnetic gauge potential, the current jA ≡ jem must be the
electromagnetic current. This gives the consistency requirement

jµem =

{
qeēLγ

µeL + qeēRγ
µeR

jµY cos(θW) + jµ3 sin(θW)
(11.34)

where jµ3 was given in (11.29) and jµY follows from (11.31) to be

jµY =
gY
2
YeL ēLγ

µeL +
gY
2
YeR ēRγ

µeR +
gY
2
YνL ν̄Lγ

µνL +
gY
2
YνR ν̄Rγ

µνR (11.35)

where the book uses the abbreviation g′ ≡ gY . Matching yields the four conditions

ēLγ
µeL : −e =

gY
2
YeL cos(θW)− gW

2
sin(θW)

ēRγ
µeR : −e =

gY
2
YeR cos(θW)

ν̄Lγ
µνL : 0 =

gY
2
YνL cos(θW) +

gW
2

sin(θW)

ν̄Rγ
µνR : 0 =

gY
2
YνR cos(θW) (11.36)

but this is not yet the full story. For invariance under SU(2)L and U(1)Y symmetry, the (weak)
hypercharges of the states in a (weak) isospin-doublet must be the same: YeL = YνL . Due to the
rotation, the weak hypercharge Y must be a linear combination of electric charge Q and weak
3-isospin I3, say Y = αQ+ βI3. The eL has Q = −1, I3 = −1

2
, and the νL has Q = 0, I3 = +1

2
.

Hence the ansatz yields YeL = −α − 1
2
β and YνL = 1

2
β. The requirement that they be equal

thus implies −α = β, and with a purely conventional extra factor 2 we have

Y = 2
(
Q− I3

)
⇐⇒ Q = I3 +

1

2
Y (11.37)
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which means that this formula looks exactly like the GellMann-Nishijima formula in strong
interactions (see GETA and Sec. 6). Hence we can augment (11.17) to read(

νe(x)
e−(x)

)
L

←→ Y = −1 , νe(x)R ←→ Y = 0 , e−(x)R ←→ Y = −2 (11.38)

together with I3 = ±1
2

and I3 = 0 and I3 = 0 in the three cases, respectively. Applying
the GellMann-Nishijima formula gives Q = ±1

2
− 1

2
· 1 = 0,−1 and Q = 0 + 1

2
· 0 = 0 and

Q = 0− 1
2
· 2 = −1 in the three cases, respectively, so everything is right.

With the hypercharge assignments YL = −1 for the left-handed doublet and YR = (0,−2)
for the singlets (νR, eR) in hand, we go back to the first two lines of (11.36) and find

e = gY cos(θW) and e = gW sin(θW) . (11.39)

The numerical value of θW has been determined in many experiments to be

sin2(θW) = 0.23146(12) (11.40)

and together with (11.39) this implies

αem

αW
=

e2

g2
W

= sin2(θW) ' 0.23 . (11.41)

Hence we find that the weak coupling is actually stronger than the electromagnetic coupling.

11.4 Couplings of the Z to quark and lepton currents

The current jZ that couples to the Z follows from (11.33) and (11.29, 11.35) as

jµZ = −gY sin(θW)
[
(Q− I3)ūLγ

µuL +QūRγ
µuR

]
+ gW cos(θW)I3[ūLγ

µuL]

=
[
− gY sin(θW)(Q− I3) + gW cos(θW)I3

]
[ūLγ

µuL]− gY sin(θW)Q[ūRγ
µuR] (11.42)

and with gY = gW tan(θW) it follows that

jµZ = gW

[
− sin2(θW)

cos(θW)
(Q− I3) + cos(θW)I3

]
[ūLγ

µuL]− gW
sin2(θW)

cos(θW)
Q[ūRγ

µuR] . (11.43)

Hence by defining

gZ ≡
gW

cos(θW)
=

e

sin(θW) cos(θW)
=

2e

sin(2θW)
(11.44)

the NC weak current (to which the Z couples) can be written as

jµZ = gZ

[
− sin2(θW)(Q− I3) + cos2(θW)I3

]
[ūLγ

µuL]− gZ sin2(θW)Q[ūRγ
µuR] (11.45)

where the big square bracket is seen to be − sin2(θW)Q+ I3. Accordingly

jµZ = gZ

[
cL · ūLγµuL + cR · ūRγµuR

]
with

cL
cR

}
≡ I3

0

}
− sin2(θW)Q (11.46)

and with the known value (11.40) one finds the first seven columns of the following table (recall
that YL is an assignment to the doublet, while the two YR differ by two units from each other).
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fermion Q I3
L I3

R YL YR cL cR cV cA
νe, νµ, ντ 0 +1

2
0 −1 0 +1

2
0 +1

2
+1

2

e−, µ−, τ− −1 −1
2

0 −1 −2 −0.27 +0.23 −0.04 −1
2

u, c, t +2
3

+1
2

0 +1
3

+4
3

+0.35 −0.15 +0.19 +1
2

d, s, b −1
3
−1

2
0 +1

3
−2

3
−0.42 +0.08 −0.35 −1

2

Using ūLγ
µuL = ūγµ 1

2
(1− γ5)u and ūRγ

µuR = ūγµ 1
2
(1 + γ5)u the current jµZ reads

jµZ = gZ ūγ
µ
[
cL

1

2
(1− γ5) + cR

1

2
(1 + γ5)

]
u = gZ ūγ

µ1

2

[
(cL + cR)− (cL − cR)γ5

]
u . (11.47)

The most compact form is thus

jµZ =
gZ
2
ūγµ

[
cV − cAγ5

]
u with

cV
cA

}
≡ cL ± cR ≡ I3

(L) −
{

2 sin2(θW)Q
0

(11.48)

and this means that the Feynman rule for the Z-boson interaction vertex is

−i
gZ
2
γµ
[
cV − cAγ5

]
(11.49)

which differs from the V-A structure of the W -interaction. Hence, the content of the last two
columns of our table can be summarized as follows. Only the neutrinos couple to the Z in a pure
V-A fashion, whereas the charged leptons and quarks couple in a semi-complicated [cV ∓ 1

2
γ5]

fashion, where “semi” refers to cA = ∓1
2
, and “complicated” refers to cR = − sin2 θW ·Q.

11.5 Application to Z-decay branching fractions

In the book there is an argument why even with general cV , cA coefficients certain chiralities
do not contribute to Z-decay matrix elements. The first (unnumbered) equation in “Decays of
the Z” is afflicted with several typos; the corrected version reads

ūRγ
µ[cV − cAγ5]vR = (PRu)†γ0γµ[cV − cAγ5]PLv = u†PRγ

0γµ[cV − cAγ5]PLv

= u†γ0PLγ
µPL[cV − cAγ5]v = ūγµPRPL[cV − cAγ5]v = 0 (11.50)

and similarly for ūLγ
µ[cV − cAγ5]vL. Based on this it follows that

Γ(Z → ff̄) =
g2
ZmZ

48π
(c2
V + c2

A) (11.51)

for a given fermion f ∈ {νe, e, u, d} or siblings in the 2nd or 3rd generation.
The value mZ is known and with (11.40) it follows that

g2
Z =

g2
W

cos2(θW)
=

8m2
W√

2 cos2(θW)
GF ' 0.55 (11.52)

and this means that we can evaluate the decay width for Z → νeν̄e with the table above as

Γ(Z → νeν̄e) =
g2
ZmZ

48π

(1

4
+

1

4

)
' 167 MeV . (11.53)
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Repeating this for all other f in the SM, and summing over f one gets the full width

ΓZ ≡
∑
f

Γ(Z → ff̄) (11.54)

and it is clear that one should include all fermions listed above, except for the top quark, since
mZ < mt. Since all other fermions satisfy mf � mZ , treating them as massless is a good
approximation. Using this generation symmetry (except for the top, of course) we find

ΓZ = 3Γ(Z → νν̄) + 3Γ(Z → e−e+) + 6Γ(Z → uū) + 9Γ(Z → dd̄) (11.55)

where the third prefactor accounts for 2 generations and 3 colors, while the last one accounts for
3 generations and 3 colors. To make things even more correct, one may multiply the hadronic
decay widths with the QCD enhancement factor [1 + αS(m2

W )/π] ' 1.038. The essential part
is the numbers for c2

V + c2
A that we may take from the table. This yields the ratios

3(0.25 + 0.25) ÷ 3(0.0016 + 0.25) ÷ 6(0.0361 + 0.25) ÷ 9(0.1225 + 0.25) (11.56)

for the partial widths (with factors 1.03081 in the last two slots). This yields the predictions

B(Z → νν̄) = 3 · 6.9% B(Z → uū) = B(Z → cc̄) = 12%

B(Z → `¯̀) = 3 · 3.5% B(Z → dd̄) = B(Z → ss̄) = B(Z → bb̄) = 15% (11.57)

for the branching fractions, and experiment finds them well confirmed. This is an important
sanity check for the numbers in the table above. Note that the 3× 3 block of “odd numbers”
in the table stems from simple numbers (in the first four numerical columns) times a Weinberg
factor sin2(θW), so things are not as complicated as they may look in the first place.

11.6 Summary

• Start with local gauge group SU(2)L × U(1)Y and couplings gW , gW , gW , gY per generator.
• Weinberg mixing W 3, B → Z,A brings modification of the last two as gW , gY → gZ , e.
• Overall relationship is e/ sin(θW) = gW = gZ cos(θW) which implies e < gW < gZ .
• Charged-current (CC) weak interactions had pure V-A structure: −igW√

2
γµ[1

2
− 1

2
γ5].

• Neutral-current (NC) weak interactions have complicated structure: −igZ
2
γµ[cV − cAγ5].

• Coefficients cL, cR follow from weak I3, Y via cL = I3 − sin2(θW)Q and cR = − sin2(θW)Q.
• Coefficients cV , cA are defined through cV ≡ cL + cR and cA ≡ cL − cR.
• R/L-chiralities have a joint Q, but weak I3

L,R differ by one half, and YL,R differ by one unit.
• Weak GellMann-Nishijima formula mimics strong counterpart: Q = I3 + 1

2
Y
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12 Outlook

In principle there are two more broad topic which would be worthy of a detailed discussion

• A brief account of the Higgs mechanism

• An account on strategies to test possible loopholes of the SM

but time restrictions prevent us from doing so. I strongly recommend reading sections 16-18 of
the book; they present these topics in a very nice and concise manner.
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